Topic Review
Cementitious and Geopolymer Composites with Lithium Slag Incorporation
Lithium slag (LS)’s particle size distribution is comparable to fly ash (FA) and ground granulated blast furnace slag (GGBS), which suggests it can enhance densification and nucleation in concrete. The mechanical treatment of LS promotes early hydration by increasing the solubility of aluminum, lithium, and silicon. LS’s compositional similarity to FA endows it with low-calcium, high-reactivity properties that are suitable for cementitious and geopolymeric applications. Increasing the LS content reduces setting times and flowability while initially enhancing mechanical properties, albeit with diminishing returns beyond a 30% threshold. LS significantly improves chloride ion resistance and impacts drying shrinkage variably. 
  • 372
  • 08 Jan 2024
Topic Review
Centralised Generation
Centralised generation refers the common process of electricity generation through large-scale centralised facilities, through Transmission lines to consumer. These facilities are usually located far away from consumers and distribute the electricity through high voltage transmission lines to a substation where it is then distributed to consumers. The basic concept being that incredibly large stations create electricity for a large group of people. The Vast majority of electricity used in Australia as well as the United States is created from Centralised Generation. Most Centralised Power Generation comes from large power plants run by fossil fuels such as coal or natural gas. Nuclear or large hydroelectricity plants are also commonly used. Many disagree with the processes of Centralised Generation as it often relies on electrical generation through processes of the combustion of fossil fuels, which are bad for the environment. However unsustainable the current system is, it is by far the most widely used, reliable and efficient system that is currently in use. Centralised Generation is fundamentally the opposite of distributed generation. Distributed generation is the small-scale generation of electricity to smaller groups of consumers. This can also include independently producing electricity by either solar or wind power. In recent years Distributed generation as has seen a spark in popularity due to its propensity to use renewable energy generation methods such as wind and solar.
  • 1.2K
  • 23 Nov 2022
Topic Review
Centralized vs. Decentralized Electric Grid Resilience
Escalating events such as extreme weather conditions, geopolitical incidents, acts of war, cyberattacks, and the intermittence of renewable energy resources pose substantial challenges to the functionality of global electric grids. Consequently, research on enhancing the resilience of electric grids has become increasingly crucial. Concurrently, the decentralization of electric grids, driven by a heightened integration of distributed energy resources (DERs) and the imperative for decarbonization, has brought about significant transformations in grid topologies.
  • 286
  • 15 Mar 2024
Topic Review
Centrifugal Fan
A centrifugal fan is a mechanical device for moving air or other gases in a direction at an angle to the incoming fluid. Centrifugal fans often contain a ducted housing to direct outgoing air in a specific direction or across a heat sink; such a fan is also called a blower, blower fan, biscuit blower, or squirrel-cage fan (because it looks like a hamster wheel). These fans increase the speed and volume of an air stream with the rotating impellers. Centrifugal fans use the kinetic energy of the impellers to increase the volume of the air stream, which in turn moves against the resistance caused by ducts, dampers and other components. Centrifugal fans displace air radially, changing the direction (typically by 90°) of the airflow. They are sturdy, quiet, reliable, and capable of operating over a wide range of conditions. Centrifugal fans are constant-displacement or constant-volume devices, meaning that, at a constant fan speed, a centrifugal fan moves a relatively constant volume of air rather than a constant mass. This means that the air velocity in a system is fixed even though the mass flow rate through the fan is not. Centrifugal fans are not positive-displacement devices and centrifugal fans have certain advantages and disadvantages when contrasted with positive-displacement blowers: centrifugal fans are more efficient, whereas positive-displacement blowers may have a lower capital cost. The centrifugal fan has a drum shape composed of a number of fan blades mounted around a hub. As shown in the animated figure, the hub turns on a driveshaft mounted in bearings in the fan housing. The gas enters from the side of the fan wheel, turns 90 degrees and accelerates due to centrifugal force as it flows over the fan blades and exits the fan housing.
  • 2.6K
  • 23 Oct 2022
Topic Review
CeO2-based transition metal catalysts
The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions, opening up new horizons for the development of highly active and robust materials. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, polyhedra) in catalysis are revealed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metal-ceria interactions, providing the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.
  • 1.2K
  • 22 Apr 2021
Topic Review
Ceramic Composites in Aeronautics and Aerospace
The quest for increased performance in the aeronautical and aerospace industries has provided the driving force and motivation for the research, investigation, and development of advanced ceramics. Special emphasis is therefore attributed to the ability of fine ceramics to fulfill an attractive, extreme, and distinguishing combination of application requirements. This research provides an extensive discussion and review of the thermal protection systems (TPS), thermal protection barriers (TBC), and dielectric barrier discharge (DBD) plasma actuators, and discusses the concept of multifunctional advanced ceramics for future engineering needs and perspectives.
  • 555
  • 02 Feb 2023
Topic Review
Ceramic Waste as a Precursor in Alkali-Activated Cements
Concrete and ceramic products are among the most widely used materials in the construction sector. Ceramic waste (CW) can be successfully employed as a precursor in alkali-activated (AA) cements, particularly in the context of prefabricated products where thermal curing is a prevalent procedure. When enhanced mechanical strength is requisite, it is feasible to attain improvements by employing hybrid systems or by combining CW with other precursors, such as blast furnace slag.
  • 247
  • 13 Dec 2023
Topic Review
Cerium Oxide-Based Memristors for Neuromorphic Computing
CeO2 is considered the most promising candidate because of its multiple oxidation states (Ce3+ and Ce4+), remarkable resistive-switching (RS) uniformity in DC mode, gradual resistance transition, cycling endurance, long data-retention period, and utilization of the RS mechanism as a dielectric layer, thereby exhibiting potential for neuromorphic computing. 
  • 172
  • 25 Oct 2023
Topic Review
Cessna 180
The Cessna 180 is a four- or six-seat, fixed conventional gear general aviation airplane which was produced between 1953 and 1981. Though the design is no longer in production, many of these aircraft are still in use as personal aircraft and in utility roles such as bush flying.
  • 1.2K
  • 23 Nov 2022
Topic Review
Cessna 210
The Cessna 210 Centurion is a six-seat, high-performance, retractable-gear, single-engine, high-wing general aviation aircraft which was first flown in January 1957 and produced by Cessna until 1986.
  • 2.4K
  • 11 Oct 2022
  • Page
  • of
  • 678
ScholarVision Creations