Topic Review
Heart Rate Monitoring of Livestock
For all homoeothermic living organisms, heart rate (HR) is a core variable to control the metabolic energy production in the body, which is crucial to realize essential bodily functions. Consequently, HR monitoring is becoming increasingly important in research of farm animals, not only for production efficiency, but also for animal welfare. Real-time HR monitoring for humans has become feasible though there are still shortcomings for continuously accurate measuring. This paper is an effort to estimate whether it is realistic to get a continuous HR sensor for livestock that can be used for long term monitoring. The review provides the reported techniques to monitor HR of living organisms by emphasizing their principles, advantages, and drawbacks. Various properties and capabilities of these techniques are compared to check the potential to transfer the mostly adequate sensor technology of humans to livestock in term of application. Based upon this review, we conclude that the photoplethysmographic (PPG) technique seems feasible for implementation in livestock. Therefore, we present the contributions to overcome challenges to evolve to better solutions. Our study indicates that it is realistic today to develop a PPG sensor able to be integrated into an ear tag for mid-sized and larger farm animals for continuously and accurately monitoring their HRs.
  • 895
  • 16 Nov 2020
Topic Review
Fractional Calculus in Electromagnetic Theory
Fractional calculus (FC) was introduced more than 300 years ago as a generalization of classical derivative and integral definitions. It is receiving increasing attention for a growing number of applications in different sciences such as physics, biology, chemistry, engineering, finance, mechanics, optics and, in particular, for modeling physical phenomena related to non-Markovian processes, signal and image processing, dielectric relaxation, viscoelasticity, electromagnetism, control theory, pharmacokinetics, fluids, heat transfer, and so on.
  • 895
  • 27 May 2022
Biography
José António Tenreiro Machado
Professor José António Tenreiro Machado, (see figure 1) was passionate about science. This manuscript intends to present his main research interests, pointing to the most relevant work that was published throughout his life. Moreover, a brief description of his early life and international academic career are also presented. His contributions to control, robotics, modeling, complex systems a
  • 894
  • 03 Nov 2022
Topic Review
Pretreatment of Hemp Biomass
It is widely accepted that fossil fuel resources emit greenhouse gases (GHG), which are the leading cause for the climate crisis, with the manufacturing, energy, and agriculture sectors as main contributors. The agricultural sector is composed of diversified and potential mobilizable sources of waste which can become an attractive alternative to fossil fuels for energy production, and thus sequester and use carbon. Therefore, a paradigm shift towards more sustainable energy alternatives, efficient waste management, and new technologies is necessary. One good solution is the energetic valorization of lignocellulosic biomass (LCB) which can also originate from agricultural wastes. The biomass consists of cellulose, hemicellulose, and lignin, which are sources of fermentable sugars that can be used for bioethanol production. However, the recovery of sugars requires the pretreatment of LCB before enzymatic hydrolysis, due to its inaccessible molecular structure. Therefore, pretreatment is required to enhance enzyme accessibility as well as bioethanol production. Raw hemp biomass consists of 35-51% cellulose (dry basis, db), 13–28% hemicellulose (db), and 12-22% lignin (db). Chemical pretreatment, more specifically alkaline pretreatment, is the most commonly used for hemp biomass.
  • 894
  • 07 Nov 2022
Topic Review
Wide Band Gap Devices
A decisive property that regulates semiconductor’s electrical and optical properties is the band gap, which is an important physical parameter for designating a wide band gap (WBG) semiconductor, and is defined as the energy needed for electrons to transition to the conduction band from the valence band. The magnetic property of the semiconducting materials also plays an important role for choosing of power devices in terms of energy efficiency with hysteresis and eddy current losses. The WBG semiconductor materials exhibit larger band gaps (2–4 eV) than their silicon (1–1.5 eV) counterparts and offer greater power efficiency, lower overall cost, smaller size, lighter weight, and lower energy consumption. WBG-based components in semiconductor devices permit its operation at high temperatures, which can be problematic when using conventional silicon semiconductors with smaller band gaps. The wider the bandgap, the higher the temperature at which the semiconductor power devices can function.
  • 894
  • 23 Dec 2022
Topic Review
Transparent Wood Composites
Transparent wood composites are novel wood materials which have up to 90% transparency and some higher mechanical properties than wood itself, made for the first time in 1992. When these materials are made commercially available, a significant benefit is expected due to their inherent biodegradable properties; however, this has the axiomatic disadvantage of being problematic for long-term construction. These materials are significantly more biodegradable than glass and plastics. Transparent wood is also shatterproof. On the other hand, concerns may be relevant due to the use of non-biodegradable plastics for long-lasting purposes such as in buildings. File:Example of Transparent Wood and Light diffusion.webm
  • 894
  • 11 Nov 2022
Topic Review
Airborne Wind Energy Systems
Because of the near-term risk of extreme weather events and other adverse consequences from climate change and, at least in the longer term, global fossil fuel depletion, there is worldwide interest in shifting to noncarbon energy sources, especially renewable energy (RE). Because of possible limitations on conventional renewable energy sources, researchers have looked for ways of overcoming these shortcomings by introducing radically new energy technologies. For wind energy, a possible alternative is airborne wind turbines.
  • 894
  • 14 Jan 2021
Topic Review
Metal Ion Detection by Glutathione
Low cost, sensitive, selective, and rapid methods for heavy metal ion (HMI) detection are of growing demand, and HMI biosensors have great potential in meeting this need due to their timeliness, cost-effectiveness and convenience in operation. The most widely reported peptide probe for HMI detection is glutathione (GSH), especially in case of lead ion (Pb2+) detection. GSH is highly stable, cost-effective, and easy to immobilize on a sensor. 
  • 894
  • 10 Jun 2021
Topic Review
Catalyst Supports for Renewable Diesel Production
High energy demand from the market due to the rapid increment of the human population worldwide has urged society to explore alternatives to replace non-renewable energy. Renewable diesel produced from biomass could be the next potential energy source for its high stability, long-term storage, and comparable performance with diesel fuels. In producing renewable diesel, the application of catalyst is essential, and the catalyst support is synthesized with the catalyst to enhance the reaction rate and catalytic properties. The application of the supported catalyst in increasing the selectivity and yield of renewable diesel is significant, in which the catalytic properties depend on the interaction between catalyst and catalyst support. The supported catalyst as a favorable substance to assist in enhancing renewable diesel yield could lead to a sustainable and greener future for the biofuel industry in Malaysia.
  • 893
  • 29 Apr 2022
Topic Review
Soft Computing Applications
Air quality models simulate the atmospheric environment systems and provide increased domain knowledge and reliable forecasting. They provide early warnings to the population and reduce the number of measuring stations. Due to the complexity and non-linear behavior associated with air quality data, soft computing models became popular in air quality modeling (AQM). This study critically investigates, analyses, and summarizes the existing soft computing modeling approaches. Among the many soft computing techniques in AQM, this article reviews and discusses artificial neural network (ANN), support vector machine (SVM), evolutionary ANN and SVM, the fuzzy logic model, neuro-fuzzy systems, the deep learning model, ensemble, and other hybrid models. Besides, it sheds light on employed input variables, data processing approaches, and targeted objective functions during modeling. The discussion in this paper will help to determine the suitability and appropriateness of a particular model for a specific modeling context.
  • 893
  • 22 Feb 2021
  • Page
  • of
  • 678
ScholarVision Creations