Topic Review
List of AMD Athlon Microprocessors
Athlon is the name of a family of CPUs designed by AMD, targeted mostly at the desktop market. It has been largely unused as just "Athlon" since 2001 when AMD started naming its processors Athlon XP, but in 2008 began referring to single core 64-bit processors from the AMD Athlon X2 and AMD Phenom product lines. Later the name began being used for some APUs.
  • 1.5K
  • 26 Oct 2022
Topic Review
Bioglass
Bioglass 45S5, commonly referred to by its commercial name Bioglass, is a glass specifically composed of 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O, and 6.0 wt% P2O5.  Glasses are non-crystalline amorphous solids that are commonly composed of silica-based materials with other minor additives.  Compared to soda-lime glass (commonly used, as in windows or bottles), Bioglass 45S5 contains less silica and higher amounts of calcium and phosphorus.  The 45S5 name signifies glass with 45 weight % of SiO2 and 5:1 molar ratio of calcium to phosphorus.  This high ratio of calcium to phosphorus promotes formation of apatite crystals; calcium and silica ions can act as crystallization nuclei.  Lower Ca:P ratios do not bond to bone.  Bioglass 45S5's specific composition is optimal in biomedical applications because of its similar composition to that of hydroxyapatite, the mineral component of bone. This similarity provides Bioglass' ability to be integrated with living bone. This composition of bioactive glass is comparatively soft in comparison to other glasses. It can be machined, preferably with diamond tools, or ground to powder. Bioglass has to be stored in a dry environment, as it readily absorbs moisture and reacts with it. Bioglass 45S5 is the first formulation of an artificial material that was found to chemically bond with bone. One of its main medical advantages is its biocompatibility, seen in its ability to avoid an immune reaction and fibrous encapsulation. Its primary application is the repair of bone injuries or defects too large to be regenerated by the natural process. The first successful surgical use of Bioglass 45S5 was in replacement of ossicles in the middle ear, as a treatment of conductive hearing loss. Other uses include cones for implantation into the jaw following a tooth extraction. Composite materials made of Bioglass 45S5 and patient's own bone can be used for bone reconstruction. Further research is being conducted for the development of new processing techniques to allow for more applications of Bioglass.
  • 1.5K
  • 01 Nov 2022
Topic Review
Framework of Smart Water System
Throughout the past years, governments, industries, and researchers have shown increasing interest in incorporating smart techniques, including sensor monitoring, real-time data transmitting, and real-time controlling into urban water systems. However, the design and construction of such a smart water system are still not quite standardized for practical applications due to the lack of consensus on the framework. The major challenge impeding the wide application of the smart water network is the unavailability of a systematic framework to guide real-world design and deployment. A new and comprehensive smart water framework, including definition and architecture, was proposed in this article. Two conceptual metrics (smartness and cyber wellness) were defined to evaluate the performance of smart water systems. This work calls for broader collaborations in the community of researchers, engineers, and industrial and governmental sectors to promote smart water applications for addressing the increasing water quantity and quality challenges.
  • 1.5K
  • 03 Feb 2022
Topic Review
Active Aerodynamic Systems for Road Vehicles
Comfort, safety, high travel speeds, and low fuel consumption are expected characteristics of modern cars. Some of these are in conflict with one other. A solution to this conflict may be time-varying body geometry realized by moving aerodynamic elements and appropriate systems for controlling their motion. 
  • 1.5K
  • 08 Apr 2022
Topic Review
Dialysis
In medicine, dialysis (from Greek διάλυσις, dialysis, "dissolution"; from διά, dia, "through", and λύσις, lysis, "loosening or splitting") is the process of removing excess water, solutes, and toxins from the blood in people whose kidneys can no longer perform these functions naturally. This is referred to as renal replacement therapy. The first successful dialysis was performed in 1943. Dialysis may need to be initiated when there is a sudden rapid loss of kidney function, known as acute kidney injury (previously called acute renal failure), or when a gradual decline in kidney function, chronic kidney disease, reaches stage 5. Stage 5 chronic renal failure is reached when the glomerular filtration rate is 10–15% of normal, creatinine clearance is less than 10 mL per minute and uremia is present. Dialysis is used as a temporary measure in either acute kidney injury or in those awaiting kidney transplant and as a permanent measure in those for whom a transplant is not indicated or not possible. In Australia, Canada, the United Kingdom, and the United States, dialysis is paid for by the government for those who are eligible. In research laboratories, dialysis technique can also be used to separate molecules based on their size. Additionally, it can be used to balance buffer between a sample and the solution "dialysis bath" or "dialysate" that the sample is in. For dialysis in a laboratory, a tubular semipermeable membrane made of cellulose acetate or nitrocellulose is used. Pore size is varied according to the size separation required with larger pore sizes allowing larger molecules to pass through the membrane. Solvents, ions and buffer can diffuse easily across the semipermeable membrane, but larger molecules are unable to pass through the pores. This can be used to purify proteins of interest from a complex mixture by removing smaller proteins and molecules.
  • 1.5K
  • 07 Nov 2022
Topic Review
Multi-Motor Vehicular Systems
With vehicle electrification, autonomous driving, and employment of X-By-Wire technology, mechanical systems are replaced by motor drives improving their efficiency and performance. Thus, vehicular systems are becoming multi-motor systems. In the following,  the case of multi-motor systems in automotive applications is laid out by presenting the different vehicular systems comprising multiple motors.
  • 1.5K
  • 16 Aug 2022
Topic Review
Pyrolysis Technology
Pyrolysis technology is a thermo-chemical route for converting biomass to many useful products (biochar, bio-oil, and combustible pyrolysis gases). The composition and relative product yield depend on the pyrolysis technology adopted. 
  • 1.5K
  • 24 Oct 2021
Topic Review
Electricity Tariffs and Solutions for Optimal Energy Management
Today, electricity tariffs play an essential role in the electricity retail market as they are the key factor for the decision-making of end-users. Additionally, tariffs are necessary for increasing competition in the electricity market. They have a great impact on load energy management. Moreover, tariffs are not taken as a fixed approach to expense calculations only but are influenced by many other factors, such as electricity generation, transmission, distribution costs, and governmental taxation. Thus, electricity pricing differs significantly between countries or between regions within a country. Improper tariff calculation methodologies in some areas have led to high-power losses, unnecessary investments, increased operational expenses, and environmental pollution due to the non-use of available sustainable energy resources.
  • 1.5K
  • 25 Nov 2022
Topic Review
Building Material Recycling
Construction is amongst the leading sectors contributing to global economic growth whilst having a huge adverse impact on resource consumption, GHG emission, solid waste generation, and global warming. One of the main strategies to deal effectively with demolished building materials or components at the end of a building’s useful service life is recycling. Recycling is defined as the process of converting construction and demolition waste into new material.
  • 1.5K
  • 09 Mar 2022
Topic Review
TiO2 as Water Splitting Photocatalyst
Hydrogen produced from water using photocatalysts driven by sunlight is a sustainable way to overcome the intermittency issues of solar power and provide a green alternative to fossil fuels. TiO2 has been used as a photocatalyst since the 1970s due to its low cost, earth abundance, and stability. There has been a wide range of research activities in order to enhance the use of TiO2 as a photocatalyst using dopants, modifying the surface, or depositing noble metals. However, the issues such as wide bandgap, high electron-hole recombination time, and a large overpotential for the hydrogen evolution reaction (HER) persist as a challenge. Here, we review state-of-the-art experimental and theoretical research on TiO2 based photocatalysts and identify challenges that have to be focused on to drive the field further. We conclude with a discussion of four challenges for TiO2 photocatalysts—non-standardized presentation of results, bandgap in the ultraviolet (UV) region, lack of collaboration between experimental and theoretical work, and lack of large/small scale production facilities. We also highlight the importance of combining computational modeling with experimental work to make further advances in this exciting field.
  • 1.5K
  • 24 Mar 2021
  • Page
  • of
  • 678
Video Production Service