Topic Review
Atomization
Atomization is an intricate operation involving unstable and complex networks with rupture and fusion of liquid molecules. There are diverse details that typify the spray formation, which are the technique and configuration of the atomization process, dimension and structure of the nozzle, experimental parameters, etc. .
  • 1.6K
  • 23 Jun 2021
Topic Review
MXene: Recent Advances in Applications
This entry covers major breakthroughs of MXene and applications.
  • 1.6K
  • 28 Mar 2022
Topic Review
Struvite Precipitation Technologies
The abatement of nutrient compounds from aqueous waste and wastewater is currently a priority issue. Indeed, the uncontrolled discharge of high levels of nutrients into water bodies causes serious deteriorations of environmental quality. On the other hand, the increasing request of nutrient compounds for agronomic utilizations makes it strictly necessary to identify technologies able to recover the nutrients from wastewater streams so as to avoid the consumption of natural resources. In this regard, the removal and recovery of nitrogen and phosphorus from aqueous waste and wastewater as struvite (MgNH4PO4·6H2O) represents an attractive approach. Indeed, through the struvite precipitation it is possible to effectively remove the ammonium and phosphate content of many types of wastewater and to produce a solid compound, with only a trace of impurities. This precipitate, due to its chemical characteristics, represents a valuable multi-nutrients slow release fertilizer for vegetables and plants growth. For these reasons, the struvite precipitation technology constantly progresses on several aspects of the process.
  • 1.6K
  • 08 Feb 2021
Topic Review
Multi-Microgrid Scheduling
Multi-microgrids address the need for a resilient, sustainable, and cost-effective electricity supply by providing a coordinated operation of individual networks. Due to local generation, dynamic network topologies, and islanding capabilities of hosted microgrids or groups thereof, various new fault mitigation and optimization options emerge. However, with the great flexibility, new challenges such as complex failure modes that need to be considered for a resilient operation, appear. Multi-Microgrid scheduling refers to the procedure of jointly controlling the assets in a multi-microgrid such that the potential of multi-microgrids can be leveraged.
  • 1.6K
  • 26 Oct 2020
Topic Review
Single Event Upset
A single event upset (SEU) is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a micro-electronic device, such as in a microprocessor, semiconductor memory, or power transistors. The state change is a result of the free charge created by ionization in or close to an important node of a logic element (e.g. memory "bit"). The error in device output or operation caused as a result of the strike is called an SEU or a soft error. The SEU itself is not considered permanently damaging to the transistor's or circuits' functionality unlike the case of single event latchup (SEL), single event gate rupture (SEGR), or single event burnout (SEB). These are all examples of a general class of radiation effects in electronic devices called single event effects (SEE).
  • 1.6K
  • 24 Oct 2022
Topic Review
Food safety and quality analysis at the point of care
Food safety remains a critical issue today. According to the World Health Organization (WHO), approximately two billion people worldwide die from food poisoning caused by bacteria, viruses and parasites annually. These incidences have led to the efforts to develop analytical devices for food safety and quality control. Conventional food safety analytical technologies, including high performance liquid chromatography (HPLC), gas chromatography (GC), quantitative real time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), are not only labor intensive and time-consuming, but also high-cost. In addition, most of the diagnostic tests are performed at well-established laboratories. However, resources in central laboratories are limited in developing countries where foodborne diseases are prevalent. Therefore, there seems to be an urgent need to create cost-effective and robust analytical devices for healthcare applications. Recent technological advances have made it possible to develop point-of-care (POC) devices, including chip-based and paper-based devices to rapidly diagnose diseases for providing lifesaving treatment in a timely manner.
  • 1.6K
  • 28 Jan 2022
Topic Review
Graphene in Strain Sensing Applications
Strain sensors, otherwise known as strain gauges, are fueled by various nanomaterials, among which graphene has attracted great interest in recent years, due to its unique electro-mechanical characteristics. Graphene shows not only exceptional physical properties but also has remarkable mechanical properties, such as piezoresistivity, which makes it a perfect candidate for strain sensing applications. 
  • 1.6K
  • 04 Feb 2022
Topic Review
Forward Osmosis
Forward osmosis (FO), the most common osmotically driven membrane process, stands out as the most promising alternative for RO processes due to its inherently low fouling tendency, easier fouling removal, and energy efficiency when compared to pressure-driven–type membrane processes.
  • 1.6K
  • 21 Jan 2021
Topic Review
Solar Radiation Management
Solar radiation management (SRM) proposals are a type of climate engineering which would seek to reflect sunlight and thus reduce global warming. Proposed methods include increasing the planetary albedo, for example using stratospheric sulfate aerosols. Restorative methods have been proposed regarding the protection of natural heat reflectors like sea ice, snow and glaciers with engineering projects. Their principal advantages as an approach to climate engineering is the speed with which they can be deployed and become fully active, their potential low financial cost, and the reversibility of their direct climatic effects. Solar radiation management projects could serve as a temporary response while levels of greenhouse gases can be brought under control by mitigation and greenhouse gas removal techniques. They would not reduce greenhouse gas concentrations in the atmosphere, and thus do not address problems such as ocean acidification caused by excess carbon dioxide (CO2).
  • 1.6K
  • 24 Nov 2022
Topic Review
Carbonation and Its Mechanisms in Reinforced Concrete Structures
Reinforced concrete (RC) has been commonly used as a construction material for decades due to its high compressive strength and moderate tensile strength. However, these two properties of RC are frequently hampered by degradation. The main degradation processes in RC structures are carbonation and the corrosion of rebars. The scientific community is divided regarding the process by which carbonation causes structural damage. Some researchers suggest that carbonation weakens a structure and makes it prone to rebar corrosion, while others suggest that carbonation does not damage structures enough to cause rebar corrosion.
  • 1.6K
  • 11 May 2022
  • Page
  • of
  • 678
Video Production Service