Topic Review
Clear-channel station
A clear-channel station is an AM radio station in North America that has the highest protection from interference from other stations, particularly concerning night-time skywave propagation. The system exists to ensure the viability of cross-country or cross-continent radio service, and is enforced through a series of treaties and statutory laws. Now known as Class A stations since 1982, they are occasionally still referred to by their former classifications of Class I-A (the highest classification), Class I-B (the next highest class), or Class I-N (for stations in Alaska too far away to cause interference to the primary clear-channel stations in the lower 48 states). The term "clear-channel" is used most often in the context of North America and the Caribbean, where the concept originated. Since 1941, these stations have been required to maintain at least 10,000 watts of power to retain their status. Nearly all these stations in the United States , Canada and The Bahamas broadcast at 50,000 watts, with several clear-channel stations in Mexico going as high as 150,000 watts and XEW in Mexico City operating at 250,000 watts for over 80 years. (Cuba was originally included in the plan and had several stations given clear-channel status, but Cuba stopped participating after 1959.)
  • 2.0K
  • 08 Oct 2022
Topic Review
Integrated Photovoltaic-Fuel Cell Systems
Integrated photovoltaic-fuel cell (IPVFC) system uses photovoltaics and fuel cells to majorly generate power and hydrogen, using solar energy as the prime mover. IPVFC amongst other integrated energy generation methodologies are renewable and clean energy technologies that have received diverse research and development attentions over the last few decades due to their potential applications in a hydrogen economy.
  • 2.0K
  • 29 Oct 2021
Topic Review
Sound Attenuators
A sound attenuator, or duct silencer, sound trap, or muffler, is a noise control acoustical treatment of Heating Ventilating and Air-Conditioning (HVAC) ductwork designed to reduce transmission of noise through the ductwork, either from equipment into occupied spaces in a building, or between occupied spaces. In its simplest form, a sound attenuator consists of an baffle within the ductwork. These baffles often contain sound-absorbing materials. The physical dimensions and baffle configuration of sound attenuators are selected to attenuate a specific range of frequencies. Unlike conventional internally-lined ductwork, which is only effective at attenuating mid- and high-frequency noise, sound attenuators can achieve broader band attenuation in relatively short lengths. Certain types of sound attenuators are essentially a Helmholtz resonator used as a passive noise-control device.
  • 2.0K
  • 27 Oct 2022
Topic Review
Lockheed Martin Compact Fusion Reactor
The Lockheed Martin Compact Fusion Reactor (CFR) is a proposed nuclear fusion reactor project at Lockheed Martin’s Skunk Works. Its high-beta configuration, which implies that the ratio of plasma pressure to magnetic pressure is greater than or equal to 1 (compared to tokamak designs' 0.05), allows a compact fusion reactor (CFR) design and expedited development. The CFR chief designer and technical team lead, Thomas McGuire studied fusion as a source of space propulsion in response to a NASA desire to improve travel times to Mars.
  • 2.0K
  • 17 Oct 2022
Topic Review
Application of Gas Foil Bearings
Gas foil bearing has been widely used in high-speed turbo machinery due to its oil-free, wide temperature range, low cost, high adaptability, high stability and environmental friendliness. In this paper, state-of-the-art investigations of gas foil bearings are reviewed, mainly on the development of the high-speed turbo machinery in China. After decades of development, progress has been achieved in the field of gas foil bearing in China. Small-scale applications of gas foil bearing have been realized in a variety of high-speed turbo machinery. The prospects and markets of high-speed turbo machinery are very broad. Various high-speed turbomachines with gas foil bearings have been developed. Due to the different application occasions, higher reliability requirements are imposed on the foil bearing technology. Therefore, its design principle, theory, and manufacturing technology should be adaptive to new application occasions before mass production. Thus, there are still a number of inherent challenges that must be addressed, for example, thermal management, rotor-dynamic stability and wear-resistant coatings.
  • 2.0K
  • 16 Jul 2021
Topic Review
PEC Reactors for Water/Wastewater Treatment
Now and in the coming years, how we use and treat water, greywater and wastewater will become more important. A suitably designed photoelectrocatalytic (PEC) reactor is one potential solution. The photoexcitation of suitable semiconducting materials in aqueous environments can lead to the production of reactive oxygen species (ROS). ROS can inactivate microorganisms and degrade a range of chemical compounds. In the case of heterogeneous photocatalysis, semiconducting materials may suffer from fast recombination of electron–hole pairs and require post-treatment to separate the photocatalyst when a suspension system is used. To reduce recombination and improve the rate of degradation, an externally applied electrical bias can be used where the semiconducting material is immobilised onto an electrically conducive support and connected to a counter electrode. These electrochemically assisted photocatalytic systems have been termed “photoelectrocatalytic” (PEC). The term is stated in the IUPAC Recommendations 2011 as “electrochemically assisted photocatalysis. The role of the photocatalyst is played by a photoelectrode, often a semiconductor”. A short description of photocatalysis is included as it can be beneficial for those unfamiliar with the topic, before moving onto PEC. This entry is adapted from https://doi.org/10.3390/w13091198
  • 2.0K
  • 20 Oct 2021
Topic Review
Active Pixel Sensor
An active-pixel sensor (APS) is an image sensor where each picture element ("pixel") has a photodetector and an active amplifier. There are many types of integrated circuit active pixel sensors including the complementary metal–oxide–semiconductor (CMOS) APS used most commonly in cell phone cameras, web cameras, most digital pocket cameras since 2010, in most digital single-lens reflex cameras (DSLRs) and Mirrorless interchangeable-lens cameras (MILCs). Such an image sensor is produced using CMOS technology (and is hence also known as a CMOS sensor), and has emerged as an alternative to charge-coupled device (CCD) image sensors. The term 'active pixel sensor' is also used to refer to the individual pixel sensor itself, as opposed to the image sensor; in that case the image sensor is sometimes called an active pixel sensor imager, or active-pixel image sensor.
  • 2.0K
  • 23 Nov 2022
Topic Review
Transducer Technologies for Biosensors and Their Wearable Applications
Biosensors refer to the collaboration of receptors that recognize target analytes and transducers that translate this recognition into a detectable signal. Biological molecules such as enzymes, nucleic acids, antibodies, or their synthetic analogues can serve as bio-receptors to bind the analyte of interest. To form a biosensor device that detects or measures the biological events or changes, the targeted matching of the bio-receptor and the analyte should be evaluated quantitatively, making the transducers indispensable components of a biosensor. Availability of various bio-receptors, transducers, and possible combinations of both components constitute various ways to classify biosensors. Compared to conventional sensors based on rigid semiconductors, metals, and ceramics, elastomers are advantageous since they exhibit the highest level of strain behavior for wearable applications. 
  • 2.0K
  • 09 Jun 2022
Topic Review
AEM for Alkali Metal–Air Batteries
Rechargeable alkali metal-air batteries have enormous potential in energy storage applications due to their high energy densities, low-cost and environment friendliness. Membrane separators determine the performance and economic viability of these batteries. Usually, porous membrane separators taken from lithium-based batteries are used. Moreover, composite and cation-exchange membranes have been tested. However, crossover of unwanted species (such as zincate ions in zinc-air flow batteries) and/or low hydroxide ions conductivity are major issues to be overcome. On the other hand, state-of-art Anion-Exchange Membranes (AEMs) have been applied to meet the current challenges with regard to rechargeable zinc-air batteries, which has received the most attention among alkali metal-air batteries. The recent advances and remaining challenges of AEMs for these batteries are critically discussed. Correlation between the properties of the AEMs and performance and cyclability of the batteries has been established.
  • 2.0K
  • 27 Oct 2020
Topic Review
Roll Bonding Processes
The roll bonding (RB) process involves joining of two or more sheets of similar or dissimilar materials at various temperatures. The process requires rolling through a pair of rollers under adequate pressure resulting in the bonding of sheets. The process is categorized into three types, i.e., cold, hot, and warm roll bonding based on the ranges of the processing temperature which in turn is related to the recrystallization temperature.
  • 2.0K
  • 03 Sep 2021
  • Page
  • of
  • 649
Video Production Service