Topic Review
Temperature-to-Digital Converters
Temperature-to-Digital Converters (TDCs) are on-chip sensors that generate temperature-dependent digital codes.
  • 806
  • 25 Nov 2022
Topic Review
Biomedical Applications of Microfluidic Devices
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). 
  • 805
  • 02 Dec 2022
Topic Review
Cathodes for PCFCs
In a protonic ceramic fuel cell (PCFC), the cathode is a porous oxide material where electrochemical reduction takes place involving the reduction of oxygen and combination with protons from the electrolyte to form water. The cathode is generally recognised as critical for the performance of solid oxide fuel cells, and even more so for the proton-conducting class of ceramic devices. PCFCs are promising electrochemical devices for the efficient and clean conversion of hydrogen and low hydrocarbons into electrical energy. Their intermediate operation temperature (500–800 °C) proffers advantages in terms of greater component compatibility, unnecessity of expensive noble metals for the electrocatalyst, and no dilution of the fuel electrode due to water formation. Nevertheless, the lower operating temperature, in comparison to classic solid oxide fuel cells, places significant demands on the cathode as the reaction kinetics are slower than those related to fuel oxidation in the anode or ion migration in the electrolyte. Cathode design and composition are therefore of crucial importance for the cell performance at low temperature. The different approaches that have been adopted for cathode materials research can be broadly classified into the categories of protonic–electronic conductors, oxide-ionic–electronic conductors, triple-conducting oxides, and composite electrodes composed of oxides from two of the other categories. 
  • 805
  • 06 Jul 2021
Topic Review
Multi-Addressed Fiber Bragg Structures
The entry presents the concept of Multi-Addressed Fiber Bragg Structures (MAFBS) and their usage in Microwave Photonic Sensor Systems (MPSS). The theory of MAFBS is the logical evolution of the theory of Addressed Fiber Bragg Structures (AFBS), which implement a microwave-photonic tecnique for their interrogation. The MAFBS is a special type of Fiber Bragg Grating (FBG), the reflection spectrum of which has three (or more) narrow notches. The frequencies of narrow notches are located in infrared range of electromagnetic spectrum, while differences between them – in microwave frequency range. All cross-differences between optical frequencies of single MAFBS are called address frequencies set. When the additive optical response from a single MAFBS, passing through optical filter with oblique frequency response, is received by a photodetector, the complex electrical signal, which consists of all cross-frequency beatings of all optical frequencies, is taken at its output. This complex electrical signal at the photodetector’s output contains enough information to determine the central frequency shift of the MAFBS.
  • 805
  • 29 Oct 2020
Topic Review
Sustainable Product Innovation Based on Triple Bottom Line
Sustainable product innovation is essential for the realisation of sustainability through sustainable consumption. From the managerial perspective, sustainable products and service development require interdisciplinary knowledge, and the measurement of the environmental and socio-economic performance are significant indications for decision-making, ecolabelling scheme, marketing, etc. Therefore, incorporating the sustainability know-how with the knowledge of life-cycle thinking and LCM, to facilitate co-creation with engineers and value chain actors to develop circular economy business models is necessary. Furthermore, utilising a sustainable product and service innovation framework, such as Sustainable Product Development and Service (SPDS) approach, can be the groundwork for integrating businesses’ sustainability efforts based on the product life cycle. With the integration of Omni-channel marketing methods, the communication of sustainability information of products and services can also improve the consumer experience and empower customers to become loyal brand advocators, creating a positive circularity toward sustainable business.
  • 805
  • 22 Jul 2022
Topic Review
Cadmium Recovery from Spent Ni-Cd Batteries
The significant increase in the demand for efficient electric energy storage during the last decade has promoted an increase in the production and use of Cd-containing batteries. On the one hand, the amount of toxic Cd-containing used batteries is growing, while on the other hand, Cd is on a list of critical raw materials (for Europe). Both of these factors call for the development of effective technology for Cd recovery from spent batteries. Alkaline nickel-cadmium (Ni-Cd) batteries are widely used as autonomous sources of industrial and household current (power banks) due to a successful combination of feasibility studies and achieved sustainable electrical characteristics. In recent decades, the market of secondary current sources for portable equipment has undergone significant changes, which leads to an intensive replacement of Ni-Cd batteries with lithium-ion (LIB) and nickel-metal-hydride.
  • 804
  • 07 Feb 2022
Topic Review
Loosening and Preload Loss of Threaded Connections
Threaded fasteners are vastly used in the industry due to ease of mounting and dismounting and flexibility of design. Nonetheless, several researchers indicate that most failures recorded on nearly any kind of machinery and vehicles are initiated at fasteners. Loosening is a process of rotation of the bolt in a direction opposite to the tightening. This can cause a loss of preload (tension created in the screw shank upon tightening) which can cause failures in the machinery. 
  • 804
  • 14 Feb 2023
Topic Review
Sustainable Consumption and Production History
SCP has two constituents, consumption and production. Shall we treat them separately or together? Sustainable production is “the creation of goods and services using processes and systems that are non-polluting, conserving of energy and natural resources, economically viable, safe and healthful for workers, communities, and consumers”. Sustainable consumption is the use of products and services that have a minimal impact on environment and enable future generations to meet their needs.
  • 804
  • 22 Sep 2021
Topic Review
BAW-Based Separation
Bulk acoustic waves have been applied to microfluidic separations with many benefits, such as flexible placement of transducer, simple, and versatile setups. A BAW-based microfluidic device typically operates with bulk acoustic standing waves in a microchannel between two parallel opposite walls. BAW-based microfluidic separation techniques have been applied in separating various types of particles and biological samples based on their size, density and compressibility.
  • 803
  • 26 Oct 2020
Topic Review
Small-Diameter Vascular Graft Engineering
The increased demands of small-diameter vascular grafts (SDVGs) globally has forced the scientific society to explore alternative strategies utilizing the tissue engineering approaches. Cardiovascular disease (CVD) comprises one of the most lethal groups of non-communicable disorders worldwide. It has been estimated that in Europe, the healthcare cost for the administration of CVD is more than 169 billion €. Common manifestations involve the narrowing or occlusion of blood vessels. The replacement of damaged vessels with autologous grafts represents one of the applied therapeutic approaches in CVD. However, significant drawbacks are accompanying the above procedure; therefore, the exploration of alternative vessel sources must be performed. Engineered SDVGs can be produced through the utilization of non-degradable/degradable and naturally derived materials. Decellularized vessels represent also an alternative valuable source for the development of SDVGs. In this review, a great number of SDVG engineering approaches will be highlighted. Importantly, the state-of-the-art methodologies, which are currently employed, will be comprehensively presented. A discussion summarizing the key marks and the future perspectives of SDVG engineering will be included in this review. Taking into consideration the increased number of patients with CVD, SDVG engineering may assist significantly in cardiovascular reconstructive surgery and, therefore, the overall improvement of patients’ life.
  • 803
  • 22 Dec 2020
  • Page
  • of
  • 650
ScholarVision Creations