Topic Review
Mesoporous Silica Nanoparticle-Mediated Drug Delivery in Breast Cancer
Breast cancer (BC) currently occupies the second rank in cancer-related global female deaths. Although consistent awareness and improved diagnosis have reduced mortality, late diagnosis and resistant response still limit the therapeutic efficacy of chemotherapeutic drugs (CDs), leading to relapse with consequent invasion and metastasis. Treatment with CDs is indeed well-versed but it is badly curtailed with accompanying side effects and inadequacies of site-specific drug delivery. As a result, drug carriers ensuring stealth delivery and sustained drug release with improved pharmacokinetics and biodistribution are urgently needed. Core–shell mesoporous silica nanoparticles (MSNPs) have been a cornerstone in this context, attributed to their high surface area, low density, robust functionalization, high drug loading capacity, size–shape-controlled functioning, and homogeneous shell architecture, enabling stealth drug delivery.
  • 260
  • 02 Aug 2023
Topic Review
Metabolic Approaches for Treatment of Dilated Cardiomyopathy
In dilated cardiomyopathy (DCM), where the heart muscle becomes stretched and thin, heart failure (HF) occurs, and the cardiomyocytes suffer from an energetic inefficiency caused by an abnormal cardiac metabolism. Although underappreciated as a potential therapeutic target, the optimal metabolic milieu of a failing heart is still largely unknown and subject to debate. Because glucose naturally has a lower P/O ratio (the ATP yield per oxygen atom), the previous studies using this strategy to increase glucose oxidation have produced some intriguing findings. In reality, the vast majority of small-scale pilot trials using trimetazidine, ranolazine, perhexiline, and etomoxir have demonstrated enhanced left ventricular (LV) function and, in some circumstances, myocardial energetics in chronic ischemic and non-ischemic HF with a reduced ejection fraction (EF).
  • 356
  • 26 Jul 2023
Topic Review
Metabolic Disorders
Metabolic syndrome (MS) is a cluster of different metabolic disorders, obesity, hypertriglyceridemia, dyslipidemia, hyperglycemia, insulin resistance, and hypertension, that lead to an increased risk of developing type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular diseases (CVDs) [1]. In Western countries, the increased prevalence of CVDs and atherosclerosis, which actually accounted for approximately 50% of all CVD-related deaths, is further sustained by a sedentary lifestyle and high-calorie food intake [3]. It has been estimated that, in 2016, more than 1.9 billion adults (>18 of age) were overweight and 650 million were obese. A diet rich in fat and sugar and a lack of exercise leads to the accumulation of visceral fat, the development of liver steatosis, and the onset of MS risk factors. Since the prevalence of all these metabolic dysfunctions increased worldwide in the last years, it is essential to find new strategies for preventing or treating obesity, dyslipidemia, and insulin resistance [3], e.g. nutritional intervention and functional foods.
  • 945
  • 16 Jan 2022
Topic Review
Metabolism and Chemical Degradation of Glutides and Gliflozins
The drug metabolism and drug degradation pathways may overlap, resulting in the formation of similar constituents. Therefore, the metabolism data can be helpful for deriving safe levels of degradation impurities and improving the quality of respective pharmaceutical products. The entry contains considerations on possible links between metabolic and degradation pathways for new antidiabetic drugs such as glutides, gliflozins, and gliptins. Special attention was paid to their reported metabolites and identified degradation products. At the same time, many interesting analytical approaches to conducting metabolism as well as degradation experiments were mentioned, including chromatographic methods and radioactive labeling of the drugs. 
  • 198
  • 04 Aug 2023
Topic Review
Metastasis Suppression through Primary Tumour Targeting with Nanoparticles
Nanotechnology’s use has expanded, demonstrating its efficacy in enhancing fields such as cancer treatment, radiation therapy, diagnostics, and imaging. Applications for nanomaterials are diverse, ranging from enhanced radiation adjuvants to more sensitive early detection instruments. Cancer, particularly when it has spread beyond the original site of cancer, is notoriously tough to combat. Many people die from metastatic cancer, which is why it remains a huge issue. Cancer cells go through a sequence of events known as the “metastatic cascade” throughout metastasis, which may be used to build anti-metastatic therapeutic techniques. Conventional treatments and diagnostics for metastasis have their drawbacks and hurdles that must be overcome. 
  • 223
  • 10 Jul 2023
Topic Review
Metformin for Cardiovascular Disease
Metformin, the most widely prescribed drug therapy for type 2 diabetes, has pleiotropic benefits, in addition to its capacity to lower elevated blood glucose levels, including mitigation of cardiovascular risk. The mechanisms underlying the latter remain unclear. Mechanistic studies have, hitherto, focused on the direct effects of metformin on the heart and vasculature. However, emerging evidence is indicative of a major role of the gut in mediating the cardiovascular actions of metformin.
  • 684
  • 25 Nov 2020
Topic Review
Metformin in Diabetic and Non-Diabetic Bone Impairment
Metformin is a widely-used anti-diabetic drug in patients with type 2 diabetic mellitus (T2DM) due to its safety and efficacy in clinical. The classic effect of metformin on lowering blood glucose levels is to inhibit liver gluconeogenesis that reduces glucose production as well as increases peripheral glucose utilization. However, the factors such as hyperglycemia, insulin deficiency, reduced serum levels of insulin-like growth factor-1 (IGF-1) and osteocalcin, accumulation of advanced glycation end products (AGEs), especially in collagen, microangiopathy, and inflammation reduced bone quality in diabetic patients. However, hyperglycemia, insulin deficiency, reduced levels of insulin-like growth factor-1 (IGF-1) and osteocalcin in serum, accumulation of advanced glycation end products (AGEs) in collagen, microangiopathy, and inflammation, reduce bone quality in diabetic patients. Furthermore, the imbalance of AGE/RAGE results in bone fragility via attenuating osteogenesis. Thus, adequate glycemic control by medical intervention is necessary to prevent bone tissue alterations in diabetic patients. Metformin mainly activates adenosine 5′ -monophosphate-activated protein kinase (AMPK), and inhibits mitochondrial respiratory chain complex I in bone metabolism. In addition, metformin increases the expression of transcription factor runt-related transcription factor2 (RUNX2) and Sirtuin protein to regulate related gene expression in bone formation. Until now, there are a lot of preclinical or clinical findings on the application of metformin to promote bone repair. Taken together, metformin is considered as a potential medication for adjuvant therapy in bone metabolic disorders further to its antidiabetic effect. Taken together, as a conventional hypoglycemia drug with multifaceted effects, metformin has been considered a potential adjuvant drug for the treatment of bone metabolic disorders. 
  • 404
  • 01 Nov 2022
Topic Review
Metformin in Type 2 Diabetes
Metformin is the most commonly used glucose-lowering therapy (GLT) worldwide and remains the first-line therapy for newly diagnosed individuals with type 2 diabetes (T2D) in management algorithms and guidelines after the UK Prospective Diabetes Study (UKPDS) showed cardiovascular mortality benefits in the overweight population using metformin.
  • 412
  • 21 Jan 2021
Topic Review
Methodologies for the physico-chemical characterization of biopharmaceuticals
Biopharmaceuticals are medicinal products obtained by biotechnological processes using molecular biology methods, which include proteins, sugars, nucleic acids, cells, tissues, used for therapeutic or diagnostic purposes in vivo. Genetically modified plants, animals, or microorganisms are also potentially used to produce biopharmaceuticals.
  • 372
  • 29 Mar 2022
Topic Review
Methods for DDIs Mediated by Renal Transporters
Drug–drug interactions (DDIs) are a key issue in clinical rational administration and post-marketing pharmacovigilance. Since the 1980s, with the development of molecular biology, the study of renal transporters has made rapid progress. The exploration of these transporters has helped to improve drug safety and efficacy, played an important role in understanding drug toxicity and DDIs, and also provided a theoretical basis for improving drug targeting. Regarding renal transporters, researchers and drug discovery scientists have studied a lot in the field of their mediated DDIs, from traditional models to recent biomarker methods and in silico models.
  • 293
  • 21 Jul 2023
  • Page
  • of
  • 106
Video Production Service