Topic Review
Autophagy in Uveal Melanoma
Autophagy is a form of programmed cell degradation that enables the maintenance of homeostasis in response to extracellular stress stimuli. Autophagy is primarily activated by starvation and mediates the degradation, removal, or recycling of cell cytoplasm, organelles, and intracellular components in eukaryotic cells. Autophagy is also involved in the pathogenesis of human diseases, including several cancers. Autophagy mechanisms and mediators have emerged as promising therapeutic targets that could be used to develop new treatment options for uveal melanoma (UM).
  • 314
  • 28 Feb 2024
Topic Review
Bacterial Efflux Pump Inhibitors Reduce Antibiotic Resistance
Efflux pump inhibitors, small molecules capable of restoring the effectiveness of existing antibiotics, are considered potential solutions to antibiotic resistance and have been an active area of research in recent years. Efflux pump inhibitors block efflux pumps through one or more processes, which can inactivate drug transport. 
  • 210
  • 05 Feb 2024
Topic Review
Bacterial Ghosts-Based Vaccine
Bacterial ghosts (BGs) are empty bacterial envelopes of Gram-negative bacteria produced by controlled expressions of cloned gene E, forming a lysis tunnel structure within the envelope of the living bacteria.
  • 737
  • 22 Dec 2021
Topic Review
Bacterial Virulence Factors
There are several levels to influence the expression of eukaryotic genes. A first level of interference is changing of the DNA’s structure on the chromatin level. Epigenetic modulation enables remodelling of the chromatin to transfer heterochromatin into euchromatin allowing transcription or vice versa. In addition, the affinity of promotors and other regulatory DNA sequences for RNA polymerases and transcription factors (TFs) can be influenced by cytosine or adenine methylation. Only a minor portion (fewer than 2%) of genes is transcribed into mRNAs, instead the majority is transferred into so called non-coding RNAs (ncRNAs). Certain long ncRNAs (lncRNAs) are also involved in epigenetic regulations. Epigenetic mechanisms are used for manipulation of gene expression in the course of several cellular processes. Here, we give an overview on the epigenetic control of gene expression by bacterial virulence factors during host cell infection.
  • 924
  • 27 Oct 2020
Topic Review
Bacteriophage Therapy of Bacterial Infections
Antibiotic-resistant infections present a serious health concern worldwide. It is estimated that there are 2.8 million antibiotic-resistant infections and 35,000 deaths in the United States every year. Such microorganisms include Acinetobacter, Enterobacterioceae, Pseudomonas, Staphylococcus and Mycobacterium. Alternative treatment methods are, thus, necessary to treat such infections. Bacteriophages are viruses of bacteria. In a lytic infection, the newly formed phage particles lyse the bacterium and continue to infect other bacteria. In the early 20th century, d’Herelle, Bruynoghe and Maisin used bacterium-specific phages to treat bacterial infections. Bacteriophages are being identified, purified and developed as pharmaceutically acceptable macromolecular “drugs,” undergoing strict quality control. Phages can be applied topically or delivered by inhalation, orally or parenterally. Some of the major drug-resistant infections that are potential targets of pharmaceutically prepared phages are Pseudomonas aeruginosa, Mycobacterium tuberculosis and Acinetobacter baumannii.
  • 987
  • 27 Jan 2021
Topic Review
Bacteriophage-Delivering Hydrogels
Hydrogels are non-toxic polymeric materials exhibiting three-dimensional networks along with their hydrophilic characteristics playing an essential role in containing large water content, which serves as a biocompatible environment suited for formulation and delivery of bacteriophages.
  • 568
  • 25 Feb 2021
Topic Review
Bacteriophages
Bacteriophages, viruses that infect bacteria, have emerged as a legitimate alternative antibacterial agent with a wide scope of applications which continue to be discovered and refined. However, the potential of some bacteriophages to aid in the acquisition, maintenance, and dissemination of negatively associated bacterial genes, including resistance and virulence genes, through transduction is of concern and requires deeper understanding in order to be properly addressed. In particular, their ability to interact with mobile genetic elements such as plasmids, genomic islands, and integrative conjugative elements (ICEs) enables bacteriophages to contribute greatly to bacterial evolution. Nonetheless, bacteriophages have the potential to be used as therapeutic and biocontrol agents within medical, agricultural, and food processing settings, against bacteria in both planktonic and biofilm environments. Additionally, bacteriophages have been deployed in developing rapid, sensitive, and specific biosensors for various bacterial targets. Intriguingly, their bioengineering capabilities show great promise in improving their adaptability and effectiveness as biocontrol and detection tools.
  • 834
  • 30 Mar 2021
Topic Review
Battling Chemoresistance in Cancer
Chemoresistance remains a lethal challenge in the realm of cancer biology and clinics. Various determinants with their modes of action have been reported with clinical implications. However, many patients regrettably die due to chemoresistance-induced failure in treatment.
  • 347
  • 22 Sep 2021
Topic Review
Bazedoxifene Acetate
Bazedoxifene acetate, BZA, a third-generation selective estrogen receptor modulator (SERM), is an indole-based estrogen receptor ligand currently used to prevent and treat postmenopausal osteoporosis.
  • 565
  • 03 Nov 2021
Topic Review
Benefits of Inclusion Complexes (Cyclodextrin–Antibiotic) in Anti-Bacterial Therapy
Cyclodextrins (CDs) are a family of carrier molecules used to improve the pharmacokinetic parameters of therapeutic molecules. These cyclic oligosaccharides have medical and pharmaceutical applications by being able to form inclusion complexes with molecules that are poorly soluble in water. The benefits of these complexes are directed towards improving the chemical and biological properties—i.e., solubility, bioavailability, stability, non-toxicity and shelf life of drug molecules.
  • 204
  • 26 Jul 2023
  • Page
  • of
  • 106
Video Production Service