Topic Review
Three-Dimensional In Vitro Cell Culture Models
Despite tremendous advancements in technologies and resources, drug discovery still remains a tedious and expensive process. Though most cells are cultured using 2D monolayer cultures, due to lack of specificity, biochemical incompatibility, and cell-to-cell/matrix communications, they often lag behind in the race of modern drug discovery. There exists compelling evidence that 3D cell culture models are quite promising and advantageous in mimicking in vivo conditions. It is anticipated that these 3D cell culture methods will bridge the translation of data from 2D cell culture to animal models. Although 3D technologies have been adopted widely these days, they still have certain challenges associated with them, such as the maintenance of a micro-tissue environment similar to in vivo models and a lack of reproducibility. However, newer 3D cell culture models are able to bypass these issues to a maximum extent.
  • 693
  • 10 Aug 2022
Topic Review
MSC-Secretome for Autoimmune and Immune-mediated Inflammatory Diseases
Immune-mediated inflammatory diseases (IMIDs) encompass several entities such as “classic” autoimmune disorders or immune-mediated diseases with autoinflammatory characteristics. Adult stem cells including mesenchymal stem cells (MSCs) are by far the most commonly used type in clinical practice. However, due to the possible side effects of MSC-based treatments, there is an increase in interest in the MSC-secretome (containing large extracellular vesicles, microvesicles, and exosomes) as an alternative therapeutic option in IMIDs. A wide spectrum of MSC-secretome-related biological activities has been proven including anti-inflammatory, anti-apoptotic, and immunomodulatory properties. In comparison with MSCs, the secretome is less immunogenic but exerts similar biological actions, so it can be considered as an ideal cell-free therapeutic alternative. 
  • 678
  • 08 Aug 2022
Topic Review
Primary Cilia: Sensory Hubs for Nitric Oxide Signaling
Primary cilia are sensory organelles present on the surface of most polarized cells. Primary cilia have been demonstrated to play many sensory cell roles, including mechanosensory and chemosensory cell functions. It is known that the primary cilia of vascular endothelial cells will bend in response to fluid shear stress, which leads to the biochemical production and release of nitric oxide, and this process is impaired in endothelial cells that lack primary cilia function or structure. In this entry, we will provide an overview of ciliogenesis and the differences between primary cilia and multicilia, as well as an overview of our published work on primary cilia and nitric oxide, and a brief perspective on their implications in health and disease.
  • 503
  • 04 Aug 2022
Topic Review
Primary Cilia and Calcium Signaling
The calcium ion (Ca2+) is a diverse secondary messenger with a near-ubiquitous role in a vast array of cellular processes. Cilia are present on nearly every cell type in either a motile or non-motile form; motile cilia generate fluid flow needed for a variety of biological processes, such as left–right body patterning during development, while non-motile cilia serve as the signaling powerhouses of the cell, with vital singling receptors localized to their ciliary membranes. Much of the research currently available on Ca2+-dependent cellular actions and primary cilia are tissue-specific processes. However, basic stimuli-sensing pathways, such as mechanosensation, chemosensation, and electrical sensation (electrosensation), are complex processes entangled in many intersecting pathways; an overview of proposed functions involving cilia and Ca2+ interplay will be briefly summarized here. Next, we will focus on summarizing the evidence for their interactions in basic cellular activities, including the cell cycle, cell polarity and migration, neuronal pattering, glucose-mediated insulin secretion, biliary regulation, and bone formation. Literature investigating the role of cilia and Ca2+-dependent processes at a single-cellular level appears to be scarce, though overlapping signaling pathways imply that cilia and Ca2+ interact with each other on this level in widespread and varied ways on a perpetual basis. Vastly different cellular functions across many different cell types depend on context-specific Ca2+ and cilia interactions to trigger the correct physiological responses, and abnormalities in these interactions, whether at the tissue or the single-cell level, can result in diseases known as ciliopathies; due to their clinical relevance, pathological alterations of cilia function and Ca2+ signaling will also be briefly touched upon throughout this review.
  • 1.4K
  • 02 Aug 2022
Topic Review
Plant-Based Antidiabetic Agents
Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. Due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. Various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. Lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia.
  • 528
  • 02 Aug 2022
Topic Review
Xenobiotics Modulating Aryl Hydrocarbon Receptor in Energy Homeostasis
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors.
  • 371
  • 01 Aug 2022
Topic Review
Marine Products in Colorectal and Pancreatic Cancers Treatment
Gastrointestinal cancer refers to malignancy of the accessory organs of digestion, and it includes colorectal cancer (CRC) and pancreatic cancer (PC). Worldwide, CRC is the second most common cancer among women and the third most common among men. PC has a poor prognosis and high mortality, with 5-year relative survival of approximately 11.5%. Conventional chemotherapy treatments for these cancers are limited due to severe side effects and the development of drug resistance. Therefore, there is an urgent need to develop new and safe drugs for effective treatment of PC and CRC. Historically, natural sources—plants in particular—have played a dominant role in traditional medicine used to treat a wide spectrum of diseases. In recent decades, marine natural products (MNPs) have shown great potential as drugs, but drug leads for treating various types of cancer, including CRC and PC, are scarce. To date, marine-based drugs have been used against leukemia, metastatic breast cancer, soft tissue sarcoma, and ovarian cancer.
  • 471
  • 30 Jul 2022
Topic Review
Accum™ Technology
Compromised activity is a common impediment for biologics requiring endosome trafficking into target cells. In cancer cells, antibody-drug conjugates (ADCs) are trapped in endosomes or subsequently pumped extracellularly, leading to a reduction in intracellular accumulation. In subsets of dendritic cells (DCs), endosome-engulfed antigens face non-specific proteolysis and collateral damage to epitope immunogenicity before proteasomal processing and subsequent surface presentation. Accum™ is a novel biotechnology exemplifying, in its initial concept, the need to circumvent the biological challenges of ADCs.
  • 405
  • 29 Jul 2022
Topic Review
Traditional Cancer Healing with Herbs and Mushrooms
Traditional herbal medicine (THM) is a “core” from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. 
  • 525
  • 28 Jul 2022
Topic Review
Pathophysiology of Diabetic Foot Ulcers
One of the most significant challenges of diabetes health care is diabetic foot ulcers (DFU). DFUs are more challenging to cure, and this is particularly true for people who already have a compromised immune system. Pathogenic bacteria and fungi are becoming more resistant to antibiotics, so they may be unable to fight microbial infections at the wound site with the antibiotics.
  • 1.7K
  • 28 Jul 2022
  • Page
  • of
  • 106
Video Production Service