Topic Review
Dependent Personality Disorder
Dependent personality disorder (DPD) is a personality disorder that is characterized by a pervasive psychological dependence on other people. This personality disorder is a long-term condition in which people depend on others to meet their emotional and physical needs, with only a minority achieving normal levels of independence. Dependent personality disorder is a cluster C personality disorder, which is characterized by excessive fear and anxiety. It begins by early adulthood, and it is present in a variety of contexts and is associated with inadequate functioning. Symptoms can include anything from extreme passivity, devastation or helplessness when relationships end, avoidance of responsibilities and severe submission.
  • 1.2K
  • 14 Nov 2022
Topic Review
Intrinsic and Acquired Chemotherapy Resistance
Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance.
  • 1.2K
  • 23 Feb 2021
Topic Review
Glioblastoma
Glioblastoma (GBM) is the most popular primary central nervous system cancer and has an extremely expansive course. Aggressive tumor growth correlates with short median overall survival (OS) oscillating between 14 and 17 months. The survival rate of patients in a three-year follow up oscillates around 10%. The interaction of the proteins programmed death-1 (PD-1) and programmed cell death ligand (PD-L1) creates an immunoregulatory axis promoting invasion of glioblastoma multiforme cells in the brain tissue. The PD-1 pathway maintains immunological homeostasis and protects against autoimmunity. PD-L1 expression on glioblastoma surface promotes PD-1 receptor activation in microglia, resulting in the negative regulation of T cell responses. Glioblastoma multiforme cells induce PD-L1 secretion by activation of various receptors such as toll like receptor (TLR), epidermal growth factor receptor (EGFR), interferon alpha receptor (IFNAR), interferon-gamma receptor (IFNGR). Binding of the PD-1 ligand to the PD-1 receptor activates the protein tyrosine phosphatase SHP-2, which dephosphorylates Zap 70, and this inhibits T cell proliferation and downregulates lymphocyte cytotoxic activity. Relevant studies demonstrated that the expression of PD-L1 in glioma correlates with WHO grading and could be considered as a tumor biomarker. Studies in preclinical GBM mouse models confirmed the safety and efficiency of monoclonal antibodies targeting the PD-1/PD-L1 axis. Satisfactory results such as significant regression of tumor mass and longer animal survival time were observed. Monoclonal antibodies inhibiting PD-1 and PD-L1 are being tested in clinical trials concerning patients with recurrent glioblastoma multiforme.
  • 1.2K
  • 21 Apr 2021
Topic Review
Neo-Vascular Lesions after Delivery/Miscarriage
The concept of intrauterine neo-vascular lesions after pregnancy, initially called placental polyps, has changed gradually. Now, based on diagnostic imaging, such lesions are defined as retained products of conception (RPOC) with vascularization. The lesions appear after delivery or miscarriage, and they are accompanied by frequent abundant vascularization in the myometrium attached to the remnant. Many of these vascular lesions have been reported to resolve spontaneously within a few months. Acquired arteriovenous malformations (AVMs) must be considered in the differential diagnosis of RPOC with vascularization. AVMs are errors of morphogenesis. The lesions start to be constructed at the time of placenta formation. These lesions do not show spontaneous regression. Although these two lesions are recognized as neo-vascular lesions, neo-vascular lesions on imaging may represent conditions other than these two lesions (e.g., peritrophoblastic flow, uterine artery pseudoaneurysm, and villous-derived malignancies). Detecting vasculature at the placenta–myometrium interface and classifying vascular diseases according to hemodynamics in the remnant would facilitate the development of specific treatments.
  • 1.2K
  • 17 Mar 2021
Topic Review
Role of Mitochondria in Neuroinflammation
Innate immune response is one of our primary defense against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. They are responsible for a variety of cell mechanism that control tissue homeostasis, such as autophagy, apoptosis, energy production and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, since the neurodegenerative process is highly based on neuroinflammation and tissue damage. Interestingly, it has been suggested that neuroinflammation, and thus mitochondria (dys)function, have a fundamental role in neurodegenerative diseases and also in acute brain damage, such in ischemic stroke and epileptic seizures.
  • 1.2K
  • 07 Dec 2020
Topic Review
GABAAR-Mediated Currents
Propofol or barbiturate application at low concentrations increases desensitization and slows deactivation of GABA-induced current and propofol/barbiturate at high concentrations directly elicits after-responses upon their washout in hippocampal or sensory neurons. It is postulated that the generation of such after-responses is caused by removal of the blockade by anesthetic agents as partial antagonists. However, the increased desensitization was invariably followed by slowdown of deactivation of GABA-induced current, and the after-response may arise as a consequence of extreme slowdown of deactivation following strong desensitization. It is thus possible that propofol and barbiturate can facilitate resensitization of GABA responses. Propofol and barbiturate are useful to treat the alcohol/benzodiazepine withdrawal syndrome. Considering that the slowdown of deactivation following desensitization and the after-response induced by propofol or barbiturate application, the regulatory mechanisms of desensitization/resensitization of GABAAR-mediated currents might be important for understanding the treatment of the alcohol/benzodiazepine withdrawal syndrome.
  • 1.2K
  • 29 Oct 2020
Topic Review
Human Chorionic Gonadotropin
Human chorionic gonadotropin is a glycoprotein hormone produced by the trophoblast during pregnancy as well as by both trophoblastic and non-trophoblastic tumors. 
  • 1.2K
  • 26 Oct 2020
Topic Review
Nanomaterials in Dentistry
       Nanomaterials are commonly considered as those materials in which the shape and molecular composition at a nanometer scale can be controlled. Subsequently, they present extraordinary properties that are being useful for the development of new and improved applications in many fields, including medicine. In dentistry, several research efforts are being conducted, especially during the last decade, for the improvement of the properties of materials used in dentistry.
  • 1.2K
  • 29 Oct 2020
Topic Review
Prostate Cancer
Metastasis of prostate cancer often results in death of the patient. A cluster of fatty acid-binding protein (FABP) genes involved in transportation, accumulation and utilization of fatty acids are co-amplified and preferentially expressed in metastatic prostate cancer compared to localized disease. These genes, namely FABP12, FABP4, FABP9, FABP8 and FABP5, individually and collectively, promote properties associated with prostate cancer metastasis. Levels of these FABP genes may serve as an indicator of prostate cancer aggressiveness, and that inhibiting the action of FABP genes may provide a new approach to prevent and/or treat metastatic prostate cancer. 
  • 1.2K
  • 31 Dec 2020
Topic Review
Essential Oils and Terpenes
Essential oils have been used in multiple ways, i.e., inhaling, topically applying on the skin, and drinking. Thus, there are three major routes of intake or application involved: the olfactory system, the skin, and the gastro-intestinal system. Understanding these routes is important for clarifying the mechanisms of action of essential oils. Here we summarize the three systems involved, and the effects of essential oils and their constituents at the cellular and systems level. Many factors affect the rate of uptake of each chemical constituent included in essential oils. It is important to determine how much of each constituent is included in an essential oil and to use single chemical compounds to precisely test their effects. Studies have shown synergistic influences of the constituents, which affect the mechanisms of action of the essential oil constituents. For the skin and digestive system, the chemical components of essential oils can directly activate gamma aminobutyric acid (GABA) receptors and transient receptor potential channels (TRP) channels, whereas in the olfactory system, chemical components activate olfactory receptors. Here, GABA receptors and TRP channels could play a role, mostly when the signals are transferred to the olfactory bulb and the brain.
  • 1.2K
  • 26 Oct 2020
  • Page
  • of
  • 1352
Video Production Service