Topic Review
Tumor-Associated Macrophages
Resident macrophage populations within tumors are termed tumor-associated macrophages (TAMs) and can comprise up to half of the tumor mass. In established solid malignancies, the anti-tumor functions of TAMs such as phagocytosis and cytotoxic activity are suppressed, and TAMs are subverted to facilitate tumor growth.
  • 894
  • 29 Mar 2022
Topic Review
Tumor-Associated Carbohydrate Antigen-Targeted Immunotherapy
Glycosylation is one of the most pivotal post-translational modifications on all types of biomolecules for the formation of glycoproteins, glycolipids, and glycoRNAs in a tissue-type specific manner. Normal glycans participate in biological events such as development, metabolism, differentiation, and immunity in mammalian cells. In cancers, the altered glycosylation, known as tumor-associated carbohydrate antigens (TACAs), is specifically expressed on cell surface molecules and play important roles in facilitating tumor formation, progression, metastasis, and immunosurveillance evasion by generating the vulnerable tumor microenvironment through the interaction of glycan binding receptors expressed on immune cells. TACAs are potential tumor glyco-biomarkers, glycoimmune checkpoints, and therapeutics.
  • 300
  • 17 Jul 2023
Topic Review
Tumor-Associated Antigen xCT
The cystine/glutamate antiporter xCT is a tumor-associated antigen that has been newly identified in many cancer types. By participating in glutathione biosynthesis, xCT protects cancer cells from oxidative stress conditions and ferroptosis, and contributes to metabolic reprogramming, thus promoting tumor progression and chemoresistance. Moreover, xCT is overexpressed in cancer stem cells. These features render xCT a promising target for cancer therapy, as has been widely reported in the literature and in our work on its immunotargeting. Interestingly, studies on the TP53 gene have revealed that both wild-type and mutant p53 induce the post-transcriptional down-modulation of xCT, contributing to ferroptosis. Moreover, APR-246, a small molecule drug that can restore wild-type p53 function in cancer cells, has been described as an indirect modulator of xCT expression in tumors with mutant p53 accumulation and is thus a promising drug to use in combination with xCT inhibition.
  • 546
  • 14 Jan 2021
Topic Review
Tumor Vascular Involvement and Surgical Planning
Retroperitoneal sarcomas (RPSs) are locally aggressive tumors that can compromise major vessels of the retroperitoneum including the inferior vena cava, aorta, or main tributary vessels. Vascular involvement can be secondary to the tumor’s infiltrating growth pattern or primary vascular origin. 
  • 225
  • 06 Apr 2023
Topic Review
Tumor Temperature
The temperature of a solid tumor is often dissimilar to baseline body temperature and, compared to healthy tissues, may be elevated, reduced, or a mix of both. The temperature of a tumor is dependent on metabolic activity and vascularization and can change due to tumor progression, treatment, or cancer type.
  • 1.3K
  • 13 Sep 2022
Topic Review
Tumor Suppressor WT1
The Wilms’ tumor 1 (WT1) gene was originally identified based on its mutational inactivation in Wilms’ tumor (nephroblastoma). This first discovery of WT1 as the responsible gene in an autosomal-recessive condition classified it as a tumor-suppressor gene. Mutations of WT1 were associated with the development of kidney tumors and urogenital defects.
  • 589
  • 26 Jul 2021
Topic Review
Tumor Suppressor Protein p53
Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle, DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response. As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their interrelationship by multimodal treatment options.
  • 530
  • 25 Jun 2021
Topic Review
Tumor Stroma Ratio in Colorectal Cancer
Colorectal cancer is the third leading cause of cancer-related death, and its incidence is rising in the younger patient population.  In the past decade, research has unveiled several processes (underlying tumorigenesis, many of which involve interactions between tumor cells and the surrounding tissue or tumor microenvironment (TME). Interactions between components of the TME are mediated at a sub-microscopic level. 
  • 347
  • 19 May 2022
Topic Review
Tumor Spheroids and Organoids
Understanding and investigating tumors is carried out by researchers using a number of different methods. One exciting and promising area is 3D tumor models including spheriod and organoid models. They act in similar ways to tumors which means we can use them to gather important information. This ranges from the way tumors react through to how different treatments may work on tumors. Ultimately they may help guide us towards the types of drugs and therapies that could be used to treat tumors. This work gives an overview of these technologies, the types of 3D models available and how they can be used to improve treatments and their applications in personalized medicine. 
  • 2.0K
  • 26 Oct 2020
Topic Review
Tumor Organoids in Precision Medicine for PDAC
Despite recent therapeutic advances, pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies, with remarkable resistance to treatment, poor prognosis, and poor clinical outcome. More efficient therapeutic approaches are urgently needed to improve patients’ survival. The development of organoid culture systems has gained substantial attention as an emerging preclinical research model. PDAC organoids have been developed to study pancreatic cancer biology, progression, and treatment response, filling the translational gap between in vitro and in vivo models
  • 342
  • 19 Apr 2023
  • Page
  • of
  • 1349
Video Production Service