Topic Review
Xenopus Oocytes to Study Fully-Processed Membrane Proteins
The use of Xenopus oocytes in electrophysiological and biophysical research constitutes a long and successful story, providing major advances to the knowledge of the function and modulation of membrane proteins, mostly receptors, ion channels, and transporters. These cells are capable of correctly expressing heterologous proteins after injecting the corresponding mRNA or cDNA. The Xenopus oocyte has become an outstanding host–cell model to carry out detailed studies on the function of fully-processed foreign membrane proteins after their microtransplantation to the oocyte. 
  • 572
  • 24 Oct 2022
Topic Review
Glucagon-Like Peptide 1 Receptor Agonists: Sex Differences
Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are a relatively new class of anti-diabetic medications that have exhibited very promising results in the treatment of type 2 diabetes mellitus (T2DM). According to the 2021 American Diabetes Association guidelines, they constitute one of the preferred add-on agents when metformin monotherapy and lifestyle modifications have failed to achieve adequate glycemic control.
  • 733
  • 06 Apr 2022
Topic Review
1,3,4-Oxadiazole
Compounds containing 1,3,4-oxadiazole ring in their structure are characterised by multidirectional biological activity.
  • 1.4K
  • 13 Sep 2021
Topic Review
18F-Fluorodeoxyglucose (FDG) in Atherosclerosis
18F-Fluorodeoxyglucose (FDG) is a glucose analogue and the most-validated radiotracer for imaging high metabolically active inflammatory cells (e.g., macrophages) and tissues (e.g., atherosclerotic plaques) in animal models and humans [10]. The results have proven to be reproducible and modifiable via interventions that are anti-inflammatory [11]. FDG-PET imaging may mirror inflammatory activity in atherosclerosis due to the consumption of large amounts of glucose by inflammatory cells compared to other plaque cells.
  • 513
  • 28 Oct 2021
Topic Review
3,7-Dioleylquercetin
Quercetin is a well-known plant flavonol and antioxidant; however, there has been some debate regarding the efficacy and safety of native quercetin as a skin-whitening agent via tyrosinase inhibition. Several researchers have synthesized quercetin derivatives as low-toxicity antioxidants and whitening agents. However, no suitable quercetin derivatives have been reported to date. In this study, a novel quercetin derivative was synthesized by the SN2 reaction using quercetin and oleyl bromide. The relationship between the structures and activities of quercetin derivatives as anti-melanogenic agents was assessed using in vitro enzyme kinetics, molecular docking, and quenching studies; cell line experiments; and in vivo zebrafish model studies. Novel 3,7-dioleylquercetin (OQ) exhibited a low cytotoxic concentration level at >100 µg/mL (125 µM), which is five times less toxic than native quercetin.
  • 411
  • 06 May 2021
Topic Review
3′UTR Length Dynamics: Releasing mRNAs from Stability Control
The 3′Untranslated regions (3′UTRs) of mRNAs, are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Although initially considered as stabilizing features of the ORF, further work identified a number of new 3’UTR functions that controlled where, when and how mRNAs were translated. Furthermore, recent research has enriched the view of 3’UTRs from static regulators of mRNA translation to highly dynamic and modular regulatory platforms that respond to different stimuli by changing their structure. By using alternative polyadenylation and cleavage sites, alternative exons or by including exonized Alu cassettes, 3’UTRs modify their length, change their sequence and consequently their inventory of associated regulatory sites to establish different co-regulatory events.
  • 1.4K
  • 13 Sep 2022
Topic Review
3D Genome
The genome is the most functional part of a cell, and genomic contents are organized in a compact three-dimensional (3D) structure. The genome contains millions of nucleotide bases organized in its proper frame. Rapid development in genome sequencing and advanced microscopy techniques have enabled us to understand the 3D spatial organization of the genome. Chromosome capture methods using a ligation approach and the visualization tool of a 3D genome browser have facilitated detailed exploration of the genome. 
  • 1.5K
  • 04 Nov 2021
Topic Review
3D Tissue and Organ Reconstruction
Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. 
  • 538
  • 24 Feb 2021
Topic Review
3D-LC
Three-dimensional liquid chromatography (3D-LC) is the consecutive combination of 3 independent LC techniques to decrease the complexity of proteome digest samples. 3D-LC systems can be performed in an online or offline manner. Ideally, each dimension in a 3D-LC system is completely orthogonal to the others.
  • 1.3K
  • 27 Oct 2020
Topic Review
4-1BBL
The ability of tumor cells to evade the immune system is one of the main challenges we confront in the fight against cancer. Multiple strategies have been developed to counteract this situation, including the use of immunostimulant molecules that play a key role in the anti-tumor immune response. Such a response needs to be tumor-specific to cause as little damage as possible to healthy cells and also to track and eliminate disseminated tumor cells. Therefore, the combination of immunostimulant molecules and tumor-associated antigens has been implemented as an anti-tumor therapy strategy to eliminate the main obstacles confronted in conventional therapies. The immunostimulant 4-1BBL belongs to the tumor necrosis factor (TNF) family and it has been widely reported as the most effective member for activating lymphocytes.
  • 581
  • 09 Jul 2021
  • Page
  • of
  • 264