Topic Review
Adipose Tissue Development
Despite developing prenatally, the adipose tissue is unique in its ability to undergo drastic growth even after reaching its mature size. Proper adipose tissue development relies on tightly regulated processes that require careful coordination and cooperation between many different cell types and their matrix cues.
  • 705
  • 25 Oct 2022
Topic Review
Adipose Tissue in IBDs
Inflammatory bowel diseases (IBDs), chronic inflammatory disorders affecting the gastrointestinal tract, include Crohn’s disease and ulcerative colitis.
  • 565
  • 11 Jun 2021
Topic Review
Advanced Glycation End Products and Cardiovascular Disease
Epidemiological studies demonstrate the role of early and intensive glycemic control in the prevention of micro and macrovascular disease in both type 1 and type 2 diabetes mellitus (DM). Hyperglycemia elicits several pathways related to the etiopathogenesis of cardiovascular disease (CVD), including the generation of advanced glycation end products (AGEs). 
  • 1.0K
  • 11 Mar 2022
Topic Review
Aging and Muscle Oxygen Utilization
The cardiovascular and skeletal muscle systems are intrinsically interconnected, sharing the goal of delivering oxygen to metabolically active tissue. Deficiencies within those systems that affect oxygen delivery to working tissues are a hallmark of advancing age. Oxygen delivery and utilization are reflected as muscle oxygen saturation (SmO2) and are assessed using near-infrared resonance spectroscopy (NIRS). SmO2 has been observed to be reduced by ~38% at rest, ~24% during submaximal exercise, and ~59% during maximal exercise with aging (>65 y).
  • 278
  • 19 Oct 2022
Topic Review
Amino Acid Catabolism
Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes.
  • 2.1K
  • 02 Aug 2023
Topic Review
AMP-activated Protein Kinase
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. If this is the case, then aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between a wide variety of conditions associated with metabolic disorder.
  • 980
  • 10 May 2021
Topic Review
Amyotrophic Lateral Sclerosis and Serum Lipid Level Association
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown etiology. Many metabolic alterations occur during ALS progress and can be used as a method of pre-diagnostic and early diagnosis. Dyslipidemia is one of the physiological changes observed in numerous ALS patients.
  • 241
  • 24 May 2023
Topic Review
Androgens
Androgens represent the main hormones responsible for maintaining hormonal balance and function in the prostate and testis. As they are involved in prostate and testicular carcinogenesis, more detailed information of their active concentration at the site of action is required. Since the introduction of the term intracrinology as the local formation of active steroid hormones from inactive precursors of the adrenal gland, mainly dehydroepiandrosterone (DHEA) and DHEA-S, it is evident that blood circulating levels of sex steroid hormones need not reflect their actual concentrations in the tissue.
  • 605
  • 19 May 2023
Topic Review
Angiotensin II
Cardiovascular disease is the leading cause of morbidity and mortality in the western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle.  Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular disease and therefore represent a significant medical and socioeconomic burden on our society.  It is not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them. At the molecular level, the vascular smooth muscle cell (VSMC) is the target, integrator, and effector cell of both atherogenic and the major effector protein of the hypertensive signal, Angiotensin II (Ang II).  Together, these signals can potentiate each other and prime the artery and exacerbate hypertension and atherosclerosis. Therefore, VSMC are the fulcrum in progression of these diseases and therefore, understanding the effects of atherogenic stimuli and Ang II on VSMC is  key to understanding and treating  atherosclerosis and hypertension.  In this review, we will examine studies in which hypertension and atherosclerosis intersect on the VSMC, and illustrate common pathways between these two diseases and vascular aging.
  • 829
  • 07 Jul 2020
Topic Review
Animal Model of Diabetes: Zucker Diabetic Fatty Rats
Laboratory Zucker Diabetic Fatty (ZDF) rat are derived from the Zucker Fatty strain. A spontaneous mutation that occurred in Zucker Fatty (ZF) rats resulted in a diabetic phenotype. The inbreeding of ZF rats carrying the desired mutation led to the development of a new strain called the Zucker Diabetic Fatty strain. The polyphenolic compounds analyzed in studies conducted using this animal model include pomegranate extracts and cocoa flavonols.
  • 285
  • 28 Apr 2022
  • Page
  • of
  • 34