Topic Review
Ribosome Interactions with SARS-CoV-2 and COVID-19 mRNA Vaccine
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causing pathogen of the unprecedented global Coronavirus Disease 19 (COVID-19) pandemic. Upon infection, the virus manipulates host cellular machinery and ribosomes to synthesize its own proteins for successful replication and to facilitate further infection. SARS-CoV-2 executes a multi-faceted hijacking of the host mRNA translation and cellular protein synthesis. Viral nonstructural proteins (NSPs) interact with a range of different ribosomal states and interfere with mRNA translation. Concurrent mutations on NSPs and spike proteins contribute to the epidemiological success of variants of concern (VOCs). The interactions between ribosomes and SARS-CoV-2 represent attractive targets for the development of antiviral therapeutics and vaccines.
  • 654
  • 18 Feb 2022
Topic Review
Nutrients in Maintaining Hematopoietic Stem Cells
Nutrients are converted by the body to smaller molecules, which are utilized for both anabolic and catabolic metabolic reactions. Cooperative regulation of these processes is critical for life-sustaining activities. Critical roles of catabolic regulators in stem cell homeostasis are conserved in several types of tissues, including hematopoiesis. These catabolic signals are also major regulators of organismal lifespan in multiple species. In parallel, changes to nutrients via alterations to dietary intake affect not only an organism’s metabolic state but also the behavior of its stem cells. While the molecular mechanisms involved in these two aspects of nutrient function may not necessarily overlap, a deeper understanding of these phenomena will point to new avenues of medical research and may furnish new agents for improving human health care.
  • 366
  • 18 Feb 2022
Topic Review
Cell–Cell Mating Interactions
It is an understatement that mating and DNA transfer are key events for living organisms. Among the traits needed to facilitate mating, cell adhesion between gametes is a universal requirement. Thus, there should be specific properties for the adhesion proteins involved in mating. Biochemical and biophysical studies have revealed structural information about mating adhesins, as well as their specificities and affinities, leading to some ideas about these specialized adhesion proteins. Single-cell force spectroscopy (SCFS) has added important findings. In SCFS, mating cells are brought into contact in an atomic force microscope (AFM), and the adhesive forces are monitored through the course of mating. The results have shown some remarkable characteristics of mating adhesins and add knowledge about the design and evolution of mating adhesins. 
  • 614
  • 18 Feb 2022
Topic Review
Peroxisomal Stress Response and Inter-Organelle Communication
Peroxisomes are single membrane-bound organelles found in all eukaryotic cells and organisms, from yeast to plants and mammals. They are key regulators of cellular and metabolic homeostasis. These organelles play important roles in redox metabolism, the oxidation of very-long-chain fatty acids (VLCFAs), and the biosynthesis of ether phospholipids. Given the essential role of peroxisomes in cellular homeostasis, peroxisomal dysfunction has been linked to various pathological conditions, tissue functional decline, and aging. In the past few decades, a variety of cellular signaling and metabolic changes have been reported to be associated with defective peroxisomes, suggesting that many cellular processes and functions depend on peroxisomes. Peroxisomes communicate with other subcellular organelles, such as the nucleus, mitochondria, endoplasmic reticulum (ER), and lysosomes. These inter-organelle communications are highly linked to the key mechanisms by which cells surveil defective peroxisomes and mount adaptive responses to protect them from damages. 
  • 886
  • 15 Feb 2022
Topic Review
Secretory Autophagy Forges Therapy Resistant Microenvironment in Melanoma
Tumor microenvironment (TME) is a complex of many cell types and extracellular matrix that play an active role in regulating and sustaining melanoma tumor progression. The secretion of several molecules, by secretory autophagy or exosome release, stimulates the intercellular communication between the different components of the TME modulating tumor response.
  • 529
  • 15 Feb 2022
Topic Review
Platelet Biology
Platelets are generated from megakaryocytes in a multi-step process called thrombopoiesis regulated by thrombopoietin. Thrombopoietin stimulates its receptor in megakaryocytes to induce the genesis of pro-platelets via a mechanism activated by low platelet counts. Platelet counts in blood are controlled by the rates of production and removal, involving mechanisms of platelet clearance, activation or ageing. Platelets are the most numerous circulating cell type (≈200,000/µL blood in humans) with an immune function. 
  • 514
  • 14 Feb 2022
Topic Review
Oral and Periodontal Bacteria Microbiota Photobiomodulation
The visible and near-infrared wavelengths can affect bacterial growth. Like in eukaryotic cells also in bacteria, photobiomodulation can affect cellular metabolism, homeostasis, defence to stress, and life-and-death mechanisms. Light-bacteria interaction for microbiota management can represent a supportive medical approach in health and illness patients.
  • 741
  • 11 Feb 2022
Topic Review
Cytoskeletal Protein
Cytoskeletal protein variants include variants in desmin, lamin A/C, titin, myosin heavy and light chain, junctophilin, nucleoporin, nesprin, and filamin C.
  • 520
  • 11 Feb 2022
Topic Review
Transient Nuclear Envelope Rupture during Metastasis
Metastasis is the process that allows the seeding of tumor cells in a new organ. The migration and invasion of cancer cells involves the pulling, pushing, and squeezing of cells through narrow spaces and pores. Tumor cells need to cross several physical barriers, such as layers of basement membranes as well as the endothelium wall during the way in and out of the blood stream, to reach the new organ.
  • 430
  • 10 Feb 2022
Topic Review
Keep Calm and Carry on with Extra Centrosomes
Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers.
  • 691
  • 10 Feb 2022
  • Page
  • of
  • 161
Video Production Service