Topic Review
Therapeutic Strategies for Leukemic Stem Cells
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. The abundance of molecular and phenotypical aberrations associated with LSCs offers a wealth of promising therapeutic targets. Therapeutic designs have focused on drugging surface biomarkers selectively overexpressed on LSCs, antagonizing the protective bone marrow (BM) microenvironment niche to dismantle LSC dormancy, blocking signal transduction to re-sensitize resistant LSCs to available chemotherapeutics, and even expediting the drug supply pipeline through drug repurposing. Evidently, growing insight into the biological properties and prognostic values of LSCs have prompted the implementation of many clinical trials and have laid critical groundwork for the development of more effective, personalized, scalable, and less-toxic therapeutic strategies.
  • 494
  • 08 Oct 2022
Topic Review
B Cells in Autoimmunity
B cells are key players in this relationship because activated and differentiated B cells produce secretory immunoglobulin A (sIgA), which binds commensal bacteria to preserve a healthy microbial ecosystem.
  • 493
  • 18 May 2021
Topic Review
Astrocytes and Tissue Engineering
Astrocytes are key cells in the central nervous system. They are involved in many functions under physiological and pathological conditions. Primary cultures of astrocytes represent an important object for basic and translational neuroscience research, especially for in vitro cell models. Astrocyte cultures for functional cell models are most commonly isolated from rodent brains, because they are easily accessible and grow rapidly. Tissue engineering and biomaterial development represent a promising alternative to animal testing and provide an ideal opportunity to develop and test various biomaterials as scaffolds for purposes such as cell ingrowth and tissue repair.
  • 493
  • 13 Jul 2021
Topic Review
Anti-Inflammatory Fibronectin-AgNP
The engineering of vascular regeneration still involves barriers that need to be conquered. In the current study, a novel nanocomposite comprising of fibronectin (denoted as FN) and a small amount of silver nanoparticles (AgNP, ~15.1, ~30.2 or ~75.5 ppm) was developed and its biological function and biocompatibility in Wharton’s jelly-derived mesenchymal stem cells (MSCs) and rat models was investigated. The surface morphology as well as chemical composition for pure FN and the FN-AgNP nanocomposites incorporating various amounts of AgNP were firstly characterized by atomic force microscopy (AFM), UV-Visible spectroscopy (UV-Vis), and Fourier-transform infrared spectroscopy (FTIR). Among the nanocomposites, FN-AgNP with 30.2 ppm silver nanoparticles demonstrated the best biocompatibility as assessed through intracellular ROS production, proliferation of MSCs, and monocytes activation. The expression levels of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, were also examined. FN-AgNP 30.2 ppm significantly inhibited pro-inflammatory cytokine expression compared to other materials, indicating superior performance of anti-immune response. Mechanistically, FN-AgNP 30.2 ppm significantly induced greater expression of vascular endothelial growth factor (VEGF) and stromal-cell derived factor-1 alpha (SDF-1α) and promoted the migration of MSCs through matrix metalloproteinase (MMP) signaling pathway. Besides, in vitro and in vivo studies indicated that FN-AgNP 30.2 ppm stimulated greater protein expressions of CD31 and von Willebrand Factor (vWF) as well as facilitated better endothelialization capacity than other materials. Furthermore, the histological tissue examination revealed the lowest capsule formation and collagen deposition in rat subcutaneous implantation of FN-AgNP 30.2 ppm. In conclusion, FN-AgNP nanocomposites may facilitate the migration and proliferation of MSCs, induce endothelial cell differentiation, and attenuate immune response. These finding also suggests that FN-AgNP may be a potential anti-inflammatory surface modification strategy for vascular biomaterials. 
  • 493
  • 08 Sep 2021
Topic Review
VAV Proteins
The VAV GEF family has been traditionally linked to protumorigenic actions in cancer. This idea was reinforced by the use of both cancer cell lines and mouse models demonstrating the proactive role of VAV proteins in the development of different types of tumors, such as skin and breast cancer. However, given the presence of structural domains that facilitate the interaction with a large number of protein partners and the particular features of some of the VAV-dependent pathways, it is conceivable that VAV proteins might antagonize cell transformation in certain in vivo contexts.
  • 493
  • 27 Oct 2021
Topic Review
Properties of Polyphenol-Based Dietary Supplements
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. 
  • 493
  • 10 Jan 2023
Topic Review
Nurse-Like Cells and CLL-B Cells
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is an example of hematological disease where cooperation between genetic defects and tumor microenvironmental interaction is involved in pathogenesis. CLL is a disease that is considered as “addicted to the host”; indeed, the crosstalk between leukemic cells and the tumor microenvironment is essential for leukemic clone maintenance supporting CLL cells’ survival, proliferation, and protection from drug-induced apoptosis. CLL cells are not innocent bystanders but actively model and manipulate the surrounding microenvironment to their own advantage. Besides the different players involved in this crosstalk, nurse-like cells (NLC) resemble features related to leukemia-associated macrophages with an important function in preserving CLL cell survival and supporting an immunosuppressive microenvironment.
  • 492
  • 14 May 2021
Topic Review
The Oligodendrocytes in Brain Ischemia-Reperfusion Injury
Oligodendrocytes are the responsible cells for axon myelination in the central nervous system. Oligodendrocytes are especially sensitive to oxidative stress and excitotoxicity generated during brain ischemia.
  • 492
  • 27 Jun 2022
Topic Review
Botulinum Toxin Type A
Botulinum neurotoxin A (BoNT-A) which is generally known as anti-contraction of muscles has been reported as a successful treatment in various types of chronic ulcers.
  • 492
  • 22 Jun 2022
Topic Review
Neural Stem Cell-Based Therapy
Transplantation of neural stem cells (NSCs) has been proposed as an alternative novel therapy to replace damaged neural circuitry after ischemic stroke onset. Nonetheless, albeit the potential of these cells for stroke therapy, many critical challenges are yet to be overcome to reach clinical applications. The major limitation of the NSC-based therapy is its inability to retain most of the donor stem cells after grafting into an ischemic brain area which is lacking of essential oxygen and nutrients for the survival of transplanted cells. Low cell survival rate limits the capacity of NSCs to repair the injured area and this poses a much more difficult challenge to the NSC-based therapy for ischemic stroke. In order to enhance the survival of transplanted cells, several stem cell culture preconditioning strategies have been employed. For ischemic diseases, hypoxic preconditioning is the most commonly applied strategy since the last few decades. Now, the preconditioning strategies have been developed and expanded enormously throughout years of efforts. This entry systematically presented studies searched from PubMed, ScienceDirect, Web of Science, Scopus and the Google Scholar database up to 31 March 2020 based on search words containing the following terms:“precondition” or “pretreatment” and “neural stem cell” and “ischemic stroke”. The searched data comprehensively reported seven major NSC preconditioning strategies including hypoxic condition, small drug molecules such as minocycline, doxycycline, interleukin-6, adjudin, sodium butyrate and nicorandil, as well as electrical stimulation using conductive polymer for ischemic stroke treatment. We discussed therapeutic benefits gained from these preconditioned NSC for in vitro and in vivo stroke studies and the detailed insights of the mechanisms underlying these preconditioning approaches. Nonetheless, there was a scarcity of evidence on the ecacy of these preconditioned NSCs in human clinical studies, therefore, it is still too early to draw a definitive conclusion on the efficacy and safety of this active compound for patient usage. Thus, we suggest for more in-depth clinical investigations of this cell-based therapy to develop into more conscientious and judicious evidence-based therapy for clinical application in the future.
  • 491
  • 02 Jul 2021
  • Page
  • of
  • 161
ScholarVision Creations