Topic Review
Cholesterol Redistribution Regulates β-cell Insulin Biosynthesis and Secretion
Cholesterol, an essential component of the cellular membranes, exhibits multiple structural and functional roles, orchestrating a wide range of signalling pathways and cellular functions. The pancreatic β-cells rely on cholesterol for their survival, proliferation, and functional maturation. Intracellular cholesterol imbalance is a tremendous burden to β-cells as this condition disables the cells from adequately delivering the sterol to its final destinations, resulting in altered plasma membrane organization, impaired mitochondrial activity, reduced insulin granule maturation, and glucose-stimulated insulin secretion. To maintain cholesterol homeostasis, β-cells have evolved a sophisticated machinery that not only controls the lipid biosynthesis or influx/efflux but also its redistribution among the different organelles. The mechanisms by which β-cells sense and shuttle the lipids across different membrane compartments are still largely unexplored.
  • 508
  • 02 Feb 2023
Topic Review
Nuclei-Based Methods on Next-Generation Sequencing
Nuclei-based methods have become increasingly popular in the study of gene expression, epigenetics, and chromatin structure. To ensure the acquisition of biologically meaningful data, it is important to consider the available methodologies, future direction, and potential challenges and utilize improved designs and appropriate experimental strategies.
  • 508
  • 21 Apr 2023
Topic Review
TP53
TP53 tumor suppressor gene is a key player for cellular homeostasis.
  • 507
  • 02 Feb 2021
Topic Review
Stem Cell Therapy for Diabetes
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders. In order to replace the function of the destroyed pancreatic beta cells in diabetes, islet transplantation is the most widely practiced treatment. However, it has several limitations. As an alternative approach, human pluripotent stem cells (hPSCs) can provide an unlimited source of pancreatic cells that have the ability to secrete insulin in response to a high blood glucose level. However, the determination of the appropriate pancreatic lineage candidate for the purpose of cell therapy for the treatment of diabetes is still debated. While hPSC-derived beta cells are perceived as the ultimate candidate, their efficiency needs further improvement in order to obtain a sufficient number of glucose responsive beta cells for transplantation therapy. On the other hand, hPSC-derived pancreatic progenitors can be efficiently generated in vitro and can further mature into glucose responsive beta cells in vivo after transplantation.
  • 507
  • 14 May 2021
Topic Review
Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer
Tumors are complex systems in constant communication with their microenvironment on which they rely for growth and survival. EVs, as intercellular communicators, are involved in several hallmarks of cancers, being active players in the remodeling of the TME and priming metastatic niches to support tumor survival, progression, and invasion. Although the importance of mitochondrial state and reprogramming in cancer progression has been established, the underlying mechanisms and metabolic phenotypes are incredibly varied, and knowledge is still lacking.
  • 507
  • 07 May 2022
Topic Review
TAL Effector
TAL (transcription activator-like) effectors (often referred to as TALEs, but not to be confused with the three amino acid loop extension homeobox class of proteins) are proteins secreted by Xanthomonas bacteria via their type III secretion system when they infect various plant species. These proteins can bind promoter sequences in the host plant and activate the expression of plant genes that aid bacterial infection. They recognize plant DNA sequences through a central repeat domain consisting of a variable number of ~34 amino acid repeats. There appears to be a one-to-one correspondence between the identity of two critical amino acids in each repeat and each DNA base in the target sequence. These proteins are interesting to researchers both for their role in disease of important crop species and the relative ease of retargeting them to bind new DNA sequences. Similar proteins can be found in the pathogenic bacterium Ralstonia solanacearum and Burkholderia rhizoxinica., as well as yet unidentified marine microorganisms. The term TALE-likes is used to refer to the putative protein family encompassing the TALEs and these related proteins.
  • 507
  • 08 Nov 2022
Topic Review
Wall-Associated Kinase
Wall-Associated Kinase (WAKs) are one of many classes of plant proteins known to serve as a medium between the extracellular matrix (ECM) and cytoplasm of cell walls. They are serine-threonine kinases that contain epidermal growth factor (EGF) repeats, a cytoplasmic kinase and are located in the cell walls. They provide a linkage between the inner and outer surroundings of cell walls. WAKs are under a group of receptor-like kinases (RLK) that are actively involved in sensory and signal transduction pathways especially in response to foreign attacks by pathogens and in cell development. On the other hand, pectins are an abundant group of complex carbohydrates present in the primary cell wall that play roles in cell growth and development, protection, plant structure and water holding capacity. Pectins are rich in galacturonic acids (OGs) and present in the middle lamellae in plant tissues where they provide strength, flexibility and adhesion between plant cells. Commercially and within the food industry, they are used as gels and stabilizers for desserts and juices. The role of WAKs in cell walls as pectin receptors is vital to a variety of functions involved with cell differentiation, form and host-pathogen relations.
  • 507
  • 25 Nov 2022
Topic Review
Ultrasound-Mediated Drug Delivery and Gene Therapy
Ultrasound (US) is a nearly innocuous and widely available imaging technique with a well-established role in various diagnostic applications. Diagnostic US techniques uses high frequency ultrasound waves to view real-time tissue and organs inside the human body. The use of US as a drug delivery facilitator was first described in the mid 90s, using the physical transient increased cell membrane permeability from sonoporation. Subsequent research reported the enhanced biophysical effects of ultrasound by incorporation of MBs.
  • 506
  • 05 Nov 2021
Topic Review
IPSC-Based PDAC Models and Immunotherapies
Advances in the treatment of pancreatic ductal adenocarcinoma (PDAC) using neoadjuvant chemoradiotherapy, chemotherapy, and immunotherapy have had minimal impact on the overall survival of patients. A general lack of immunogenic features and a complex tumor microenvironment (TME) are likely culprits for therapy refractoriness in PDAC. Induced pluripotent stem cells (iPSCs) should be explored as a means to advance the treatment options for PDAC, by providing representative in vitro models of pancreatic cancer development. In addition, iPSCs could be used for tailor-made cellular immunotherapies or as a source of tumor-associated antigens in the context of vaccination.
  • 506
  • 29 Mar 2022
Topic Review
Ferroptosis in Cancers and Leukemia
Ferroptosis is a mode of cell death regulated by iron-dependent lipid peroxidation. Grow- ing evidence suggests ferroptosis induction as a novel anti-cancer modality that could potentially overcome therapy resistance in cancers. The molecular mechanisms involved in the regulation of ferroptosis are complex and highly dependent on context. Therefore, a comprehensive understanding of its execution and protection machinery in each tumor type is necessary for the implementation of this unique cell death mode to target individual cancers. 
  • 507
  • 04 May 2023
  • Page
  • of
  • 161
ScholarVision Creations