Topic Review
Mutations in TSC Genes and Synaptic Transmission
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease featuring localized uncontrolled growth of tissues, known as hamartomas, in many organs, including the central nervous system (CNS). A large proportion of the cases are sporadic mutations (ca. two thirds). The disease results from a loss-of-function mutation in either the TSC1 or TSC2 gene, which encode for hamartin and tuberin proteins, respectively; two proteins that together form the Tsc1–Tsc2 complex. This complex, which is the converging center of several signaling pathways, has GTPase activity and can inhibit the activity of Ras homolog enriched in the brain (Rheb). The complex itself is modulated by phosphorylation via, for example, Akt or AMPK (Figure 1).
  • 540
  • 09 Nov 2021
Topic Review
Muse Cells
Muse cells, identified as pluripotent surface marker, stage-specific embryonic antigen (SSEA)-3(+), are endogenous reparative pluripotent stem cells distributed in the bone marrow, peripheral blood and connective tissue of every organ. Since they are non-tumorigenic and do not require gene introduction or cytokine treatment to be rendered pluripotent and induce differentiation, they elicit few safety concerns. They can be delivered intravenously and do not require surgery for their administration since they selectively home to damaged site by sphingosine-1-phosphate (S1P)-S1PR2 axis after intravenous injection. Donor-Muse cells can be used without HLA-matching test or immunosuppressant treatment since they have a specific immunomodulatory system represented by HLA-G expression.
  • 780
  • 12 Oct 2021
Topic Review
Muscle Stem Cells
Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Skeletal musculature is one of the largest organs of the human body, comprising more than 600 muscles that enable body motion. Deciphering the molecular and cellular features of the MuSC would provide novel insights into their regenerative potential and to improve therapeutic strategies. Drosophila has proven to be a suitable model to study MuSC and offers a combination of genetics, live imaging and genomics approaches to uncover general principles governing MuSC biology in vivo.
  • 508
  • 27 Aug 2021
Topic Review
Muscle Regeneration and RNA
In skeletal muscle, regeneration is driven by a reservoir of resident progenitors, called satellite cells, able to efficiently replenish damaged muscle [44]. These cells are not present in the adult cardiac muscle, although a regenerative response, mediated by the proliferation of pre-existing cardiomyocytes, occurs in mice during the first week of life [45,46,47]. Temporal and tissue-specific nuances in the process of regeneration may underlie the participation of still unknown protagonists, whose ability to fine-tune myogenic expression becomes critical in both physiological and pathological conditions. The peculiar properties of RNA, along with its tissue specificity, satisfy the requirements for its integration in regenerative networks and will surely pave the way for future applications in medicine.
  • 468
  • 09 Oct 2021
Topic Review
Muscarinic Receptors Associated with Cancer
Cancer has been considered the pathology of the century and factors such as the environment may play an important etiological role. The ability of muscarinic agonists to stimulate growth and muscarinic receptor antagonists to inhibit tumor growth has been demonstrated for breast, melanoma, lung, gastric, colon, pancreatic, ovarian, prostate, and brain cancer. 
  • 347
  • 13 May 2022
Topic Review
Multiple Signaling Neurodevelopmental Pathways
Understanding the autistic brain and the involvement of genetic, non-genetic, and numerous signaling pathways in the etiology and pathophysiology of autism spectrum disorder (ASD) is complex, as is evident from various studies. Apart from multiple developmental disorders of the brain, autistic subjects show a few characteristics like impairment in social communications related to repetitive, restricted, or stereotypical behavior, which suggests alterations in neuronal circuits caused by defects in various signaling pathways during embryogenesis. Most of the research studies on ASD subjects and genetic models revealed the involvement of mutated genes with alterations of numerous signaling pathways like Wnt, hedgehog, and Retinoic Acid (RA).
  • 513
  • 12 Jul 2021
Topic Review
Multilayer Mesenchymal Stem Cell Sheets
Cell and gene therapies have been developing dramatically over the past decade. To face and adapt to the development of these new therapies, the Food and Drug Administration (FDA) wrote and updated new guidelines from 2016 and keep updating them. Mesenchymal stem cells (MSCs) are the most used cells for treatment, far ahead from the induced pluripotent stem cells (iPSCs), based on registered clinical trials at clinicaltrials.gov. They are widely used because of their differentiation capacity and their anti-inflammatory properties, but some controversies still require clear answers. Additional studies are needed to determine the dosage, the number, and the route of injections (location and transplantation method), and if allogenic MSCs are safe compared to autologous MSC injection, including their long-term effect. In this review, we summarized the research our company is conducting with the adipose stromal cells in engineering cell sheets and their potential application
  • 481
  • 22 Sep 2021
Topic Review
Multidrug Resistance Mechanisms and Nano-Treatments
The cellular mechanisms of drug resistance prevent the correct efficacy of the therapies used in various types of cancer and nanotechnology has been postulated as a possible alternative to avoid them. This entry focuses on describing the different mechanisms of drug resistance and dis-covering which nanotechnology-based therapies have been used in recent years to evade them in colon (CRC) and pancreatic cancer (PAC). Here we summarize the use of different types of nanotechnology (mainly nanoparticles) that have shown efficacy in vitro and in vivo in preclinical phases, allowing future in-depth research in CRC and PAC and its translation to future clinical trials.
  • 530
  • 02 May 2021
Topic Review
Multi-Scale Imaging of the Dynamic Organization of Chromatin
Chromatin is regarded as a heterogeneous and dynamic structure occupying a non-random position within the cell nucleus, where it plays a key role in regulating various functions of the genome. In addition to challenging early assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made it possible to visualize and characterize different chromatin structures such as clutches, domains and compartments. More specifically, super-resolution microscopy facilitates the study of different cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within the nucleus in different environments.
  • 296
  • 28 Nov 2023
Topic Review
Mucociliary clearance
Mucociliary clearance constitutes an innate lung defense mechanism that is primarily driven by ciliated cells. Respiratory mucus traps pathogens entering the airways, and lung cilia propel them outward via their coordinated directional motion. Thus, damage to the component(s) of this apparatus is averted and physiological function is ensured. 
  • 899
  • 30 Sep 2021
  • Page
  • of
  • 161
ScholarVision Creations