Topic Review
Nucleus in Drosophila Oocyte Development
Oogenesis is a developmental process leading to the formation of an oocyte, a haploid gamete, which upon fertilisation and sperm entry allows the male and the female pronuclei to fuse and give rise to a zygote. In addition to forming a haploid gamete, oogenesis builds up a store of proteins, mRNAs, and organelles in the oocyte needed for the development of the future embryo. In several species, such as Drosophila, the polarity axes determinants of the future embryo must be asymmetrically distributed prior to fertilisation. In the Drosophila oocyte, the correct positioning of the nucleus is essential for establishing the dorsoventral polarity axis of the future embryo and allowing the meiotic spindles to be positioned in close vicinity to the unique sperm entry point into the oocyte.
  • 155
  • 19 Feb 2024
Topic Review
Nucleosome-Omics
Nucleosome-Omics is one of the subdisciplines of Omics, which studies nucleosome-level phenomenon on chromatin and genome 3D landscape, including the interaction and combination among histones, trancriptional factors and DNA, by combining nucleosome resolution omics technologies with high-throughput sequencing techniques.
  • 442
  • 27 Jun 2022
Topic Review
Nucleobindin-2/Nesfatin-1
Nucleobindin 2 (NUCB2) was first described in 1994 in KM3 acute lymphoblastic leukemia cell line as a DNA binding/EF-hand/acidic-amino acid-rich protein. It has been extensively studied since Oh-I et al. identified nesftain-1 as a NUCB2 cleavage product. Several reports indicate that NUCB2/NESF-1 is also expressed in many organs and tissues (e.g., in the stomach, pancreas, heart, reproductive organs, and adipose tissue).
  • 453
  • 28 Sep 2021
Topic Review
Nuclei-Based Methods on Next-Generation Sequencing
Nuclei-based methods have become increasingly popular in the study of gene expression, epigenetics, and chromatin structure. To ensure the acquisition of biologically meaningful data, it is important to consider the available methodologies, future direction, and potential challenges and utilize improved designs and appropriate experimental strategies.
  • 507
  • 21 Apr 2023
Topic Review
NSCLC 3D Models
Hypoxia is the most common microenvironment feature of lung cancer tumors, which affects cancer progression, metastasis and metabolism. Oxygen induces both proteomic and genomic changes within tumor cells, which cause many alternations in the tumor microenvironment (TME). This study defines current knowledge in the field of tumor hypoxia in non-small cell lung cancer (NSCLC), including biology, biomarkers, in vitro and in vivo studies and also hypoxia imaging and detection. While classic two-dimensional (2D) in vitro research models reveal some hypoxia dependent manifestations, three-dimensional (3D) cell culture models more accurately replicate the hypoxic TME.
  • 527
  • 26 Jan 2021
Topic Review
Nrf2 and Oxidative Stress
Organisms are continually exposed to exogenous and endogenous sources of reactive oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell. ROS have important roles in a wide range of physiological processes; however, high ROS levels are associated with oxidative stress and disease progression. Oxidative stress has been implicated in nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator.
  • 915
  • 01 Feb 2023
Topic Review
NRF2 and Key Transcriptional Targets
Melanocytes are dendritic, pigment-producing cells located in the skin and are responsible for its protection against the deleterious effects of solar ultraviolet radiation (UVR), which include DNA damage and elevated reactive oxygen species (ROS). They do so by synthesizing photoprotective melanin pigments and distributing them to adjacent skin cells (e.g., keratinocytes). However, melanocytes encounter a large burden of oxidative stress during this process, due to both exogenous and endogenous sources.To protect themselves, they utilize numerous antioxidant systems to reduce the amount of reactive oxygen and nitrogen species present in the cell and this activity then contributes towards the prevention of cancer formation. However, after the formation of melanoma these same antioxidant systems are often coopted by the cancer in order to promote its uncontrolled growth and metastasis.
  • 391
  • 06 Apr 2022
Topic Review
NPDC by Mutation of NPC1 and NPC2
Cholesterol trafficking is initiated by the endocytic pathway and transported from endo/lysosomes to other intracellular organelles. Deficiencies in cholesterol-sensing and binding proteins NPC1 and NPC2 induce accumulation in lysosomes and the malfunction of trafficking to other organelles. Each organelle possesses regulatory factors to induce cholesterol trafficking. The mutation of NPC1 and NPC2 genes induces Niemann-Pick disease type C (NPDC), which is a hereditary disease and causes progressive neurodegeneration, developmental disability, hypotonia, and ataxia. Oxidative stress induces damage in NPDC-related intracellular organelles. Although studies on the relationship between NPDC and oxidation are relatively rare, several studies have reported the therapeutic potential of antioxidants in treating NPDC. Investigating antioxidant drugs to relieve oxidative stress and cholesterol accumulation is suggested to be a powerful tool for developing treatments for NPDC. Understanding NPDC provides challenging issues in understanding the oxidative stress–lysosome metabolism of the lipid axis.
  • 187
  • 11 Dec 2023
Topic Review
Notch Signaling in Inflammatory Diseases
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. The spectrum of diseases is as broad as the cellular functions controlled by Notch signaling. In various types of cancer, cerebrovascular diseases, and inherited disease syndromes, Notch signaling has been found to exert a detrimental impact as well as in inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE), systemic sclerosis (SSc), primary biliary cirrhosis, and atherosclerosis. 
  • 560
  • 17 Feb 2023
Topic Review
Notch Signaling Function in Angiogenesis
The Notch signaling pathway is a major regulator of vascular morphogenesis, managing endothelial response to vascular growth factors, endothelial specialization, establishment and maintenance of vascular identity as venous or arterial and vascular maturation.
  • 2.2K
  • 03 Dec 2020
  • Page
  • of
  • 161
ScholarVision Creations