Topic Review
PARP1 in Homeostasis and Tumorigenesis
Detailing the connection between homeostatic functions of enzymatic families and eventual progression into tumorigenesis is crucial to the understanding of anti-cancer therapies. One key enzyme group involved in this process is the Poly (ADP-ribose) polymerase (PARP) family, responsible for an expansive number of cellular functions, featuring members well established as regulators of DNA repair, genomic stability and beyond. Several PARP inhibitors (PARPi) have been approved for clinical use in a range of cancers, with many more still in trials. Unfortunately, the occurrence of resistance to PARPi therapy is growing in prevalence and requires the introduction of novel counter-resistance mechanisms to maintain efficacy.
  • 181
  • 22 Aug 2023
Topic Review
PARP Inhibitor-Induced Synthetic Lethality
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the poly-ADP ribose polymerase 1 (PARP) inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. In the most common aspect of precision medicine, PARPi triggers synthetic lethality in cancer cells harboring BRCA1/2 mutations/deficiencies. 
  • 673
  • 05 Dec 2022
Topic Review
Parietal Epithelial Cell Behavior
Glomerular parietal epithelial cells (PECs) have been increasingly recognized to have crucial functions. Lineage tracking in animal models showed the expression of a podocyte phenotype by PECs during normal glomerular growth and after acute podocyte injury, suggesting a reparative role of PECs. Conversely, activated PECs are speculated to be pathogenic and comprise extracapillary proliferation in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CrescGN). The reparative and pathogenic roles of PECs seem to represent two sides of PEC behavior directed by the local milieu and mediators. 
  • 239
  • 17 Feb 2023
Topic Review
Parathyroid Hormone-Related Protein
Parathyroid hormone-related protein (PTHrP), classically regarded as the mediator of the humoral hypercalcemia of malignancy syndrome, is a polyhormone that undergoes proteolytic processing into smaller bioactive forms. These bioactive forms comprise an N-terminal-as well as midregion-and C-terminal peptides, which have been shown to regulate various biological events, such as survival, proliferation and differentiation, in diverse cell model systems, both normal and pathological. 
  • 437
  • 12 Jul 2023
Topic Review
Paraoxonases in Neurological Disorders
Paraoxonase enzymes serve as an important physiological redox system that participates in the protection against cellular injury caused by oxidative stress. The PON enzyme family consists of three members (PON-1, PON-2, and PON-3) that share a similar structure and location as a cluster on human chromosome 7. These enzymes exhibit anti-inflammatory and antioxidant properties with well-described roles in preventing cardiovascular disease. Perturbations in PON enzyme levels and their activity have also been linked with the development and progression of many neurological disorders and neurodegenerative diseases.
  • 244
  • 27 Apr 2023
Topic Review
Pannexin-1 Channels and Neuroinflammation
Neuroinflammation is a major component of central nervous system (CNS) injuries and neurological diseases, including Alzheimer’s disease, multiple sclerosis, neuropathic pain, and brain trauma. The activation of innate immune cells at the damage site causes the release of pro-inflammatory cytokines and chemokines, which alter the functionality of nearby tissues and might mediate the recruitment of leukocytes to the injury site. If this process persists or is exacerbated, it prevents the adequate resolution of the inflammation, and ultimately enhances secondary damage. Adenosine 5′ triphosphate (ATP) is among the molecules released that trigger an inflammatory response, and it serves as a chemotactic and endogenous danger signal. Extracellular ATP activates multiple purinergic receptors (P2X and P2Y) that have been shown to promote neuroinflammation in a variety of CNS diseases. Recent studies have shown that Pannexin-1 (Panx1) channels are the principal conduits of ATP release from dying cells and innate immune cells in the brain.
  • 763
  • 25 May 2021
Topic Review
Palmitoylation in Aging and Diseases with Cognitive Decline
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation.
  • 347
  • 23 Apr 2023
Topic Review
P63 and p73 Protein Interactions
Epithelial organs are the first barrier against microorganisms and genotoxic stress, in which the p53 family members p63 and p73 have both overlapping and distinct functions. Intriguingly, p73 displays a very specific localization to basal epithelial cells in human tissues, while p63 is expressed in both basal and differentiated cells. Investigations of p63 and p73 protein–protein interactions reveal distinct  functions underlying the aforementioned distribution. The p73 and p63 cooperate in the genome stability surveillance in proliferating cells; p73 specific interactors contribute to the transcriptional repression, anaphase promoting complex and spindle assembly checkpoint, whereas p63 specific interactors play roles in the regulation of mRNA processing and splicing in both proliferating and differentiated cells suggesting diversification of the RNA and DNA specific functions within the p53 family.
  • 800
  • 07 Jan 2021
Topic Review
p38γ MAPK in Physiology and Disease
p38γ MAPK (also called ERK6 or SAPK3) is a family member of stress-activated MAPKs and has common and specific roles as compared to other p38 proteins in signal transduction. In addition to inflammation, p38γ metabolic signaling is involved in physiological exercise and in pathogenesis of cancer, diabetes, and Alzheimer’s disease, indicating its potential as a therapeutic target. p38γphosphorylates at least 19 substrates through which p38γ activity is further modified to regulate life-important cellular processes such as proliferation, differentiation, cell death, and transformation, thereby impacting biological outcomes of p38γ-driven pathogenesis. P38γ signaling is characterized by its unique reciprocal regulation with its specific phosphatase PTPH1 and by its direct binding to promoter DNAs, leading to transcriptional activation of targets including cancer-like stem cell drivers.
  • 266
  • 04 Jul 2023
Topic Review
P2X7R and Microglia
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in various cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to activate in humans fully. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated extracellular ATP levels accompanying inflammation and tissue damage.
  • 192
  • 29 Jan 2024
  • Page
  • of
  • 161
ScholarVision Creations