Topic Review
Hypoxia-Inducible Factors and Immunosenescence
Hypoxia activates hypoxia-related signaling pathways controlled by hypoxia-inducible factors (HIFs). HIFs represent a quick and effective detection system involved in the cellular response to insufficient oxygen concentration.
  • 187
  • 23 Aug 2023
Topic Review
Calcium Signaling of Heat Shock in Crop Plants
Climate change and the increasing frequency of high temperature (HT) events are significant threats to global crop yields. To address this, a comprehensive understanding of how plants respond to heat shock (HS) is essential. Signaling pathways involving calcium (Ca2+), a versatile second messenger in plants, encode information through temporal and spatial variations in ion concentration. Ca2+ is detected by Ca2+-sensing effectors, including channels and binding proteins, which trigger specific cellular responses. At elevated temperatures, the cytosolic concentration of Ca2+ in plant cells increases rapidly, making Ca2+ signals the earliest response to HS. 
  • 185
  • 17 Jan 2024
Topic Review
Extracellular Vesicles in the Central Nervous System
Communication in the central nervous system (CNS) is fundamental for different biological functions including brain development, homeostasis preservation, and neural circuit formation. Indeed, the crosstalk between glia and neurons is critical in the CNS for a variety of biological functions, such as brain development, neural circuit maturation, and homeostasis maintenance. Glia cells are involved in different processes including inflammatory responses to infections or diseases, neurotrophic support, and synaptic remodelling and pruning. In addition to the traditional direct cell-to-cell contact, glial cell can also communicate with neurons through the paracrine action of secreted molecules, or by the release and reception of extracellular vesicles (EVs). EVs, which are subdivided into three subtypes: microvesicles, exosomes, and apoptotic bodies, are a major constituent of the cell secretome. EVs have the ability to circulate in the extracellular body fluid and modulate several biological processes and their associated pathways. EVs cross the blood–brain barrier (BBB) bidirectionally from the bloodstream to the brain parenchyma and vice versa. They play an important role in brain–periphery communication in physiology and pathophysiology. According to the current literature, although EVs cross the BBB, it is unclear how, where, and when they can overcome this tightly controlled cellular barrier.
  • 185
  • 30 Jan 2024
Topic Review
PARP1 in Homeostasis and Tumorigenesis
Detailing the connection between homeostatic functions of enzymatic families and eventual progression into tumorigenesis is crucial to the understanding of anti-cancer therapies. One key enzyme group involved in this process is the Poly (ADP-ribose) polymerase (PARP) family, responsible for an expansive number of cellular functions, featuring members well established as regulators of DNA repair, genomic stability and beyond. Several PARP inhibitors (PARPi) have been approved for clinical use in a range of cancers, with many more still in trials. Unfortunately, the occurrence of resistance to PARPi therapy is growing in prevalence and requires the introduction of novel counter-resistance mechanisms to maintain efficacy.
  • 184
  • 22 Aug 2023
Topic Review
Human Papillomavirus Infection in Penile Cancer
Penile cancer (PC) is a rare male malignant tumor, with early lymph node metastasis and poor prognosis. Human papillomavirus (HPV) plays a key role in the carcinogenesis of PC.
  • 183
  • 11 Dec 2023
Topic Review
Enteric Glial Cells and Their Involvement in PD
The brain–gut axis has been identified as an important contributor to the physiopathology of Parkinson’s disease (PD).  In this pathology, inflammation is thought to be driven by the damage caused by aggregation of α-synuclein in the brain. Activation and reactive gliosis are associated to the neurodegeneration produced by Parkinson’s disease in the enteric nervous system.
  • 183
  • 26 Jan 2024
Topic Review
Protective Genes against Cancer
Richard Peto’s paradox, first described in 1975 from an epidemiological perspective, established an inverse correlation between the probability of developing cancer in multicellular organisms and the number of cells. Larger animals exhibit fewer tumors compared to smaller ones, though exceptions exist. Mice are more susceptible to cancer than humans, while elephants and whales demonstrate significantly lower cancer prevalence rates than humans. How nature and evolution have addressed the issue of cancer in the animal kingdom remains largely unexplored. In the field of medicine, much attention has been devoted to cancer-predisposing genes, as they offer avenues for intervention, including blocking, downregulating, early diagnosis, and targeted treatment. Predisposing genes also tend to manifest clinically earlier and more aggressively, making them easier to identify. 
  • 183
  • 01 Feb 2024
Topic Review
Insulin-like Growth Factor (IGF) System in Corneal Epithelium
The corneal epithelium, comprising three layers of cells, represents the outermost portion of the eye and functions as a vital protective barrier while concurrently serving as a critical refractive structure. Maintaining its homeostasis involves a complex regenerative process facilitated by the functions of the lacrimal gland, tear film, and corneal nerves. Crucially, limbal epithelial stem cells located in the limbus (transitional zone between the cornea and the conjunctiva) are instrumental for the corneal epithelium integrity by replenishing and renewing cells. Re-epithelialization failure results in persistent defects, often associated with various ocular conditions including diabetic keratopathy. The insulin-like growth factor (IGF) system is a sophisticated network of insulin and other proteins essential for numerous physiological processes.
  • 182
  • 04 Mar 2024
Topic Review
EMP/EMT-Dependent Fibrosis
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death.
  • 180
  • 08 Mar 2024
Topic Review
CK2 in Musculoskeletal Disorders
Protein kinase CK2 (CK2) influences one-fifth of the cellular phosphoproteome. It regulates almost all cellular pathways and is thus a critical switch between biological processes within a cell. Inhibition of CK2 reverses oncogene addiction of tumor and alters tumor microenvironment.
  • 179
  • 07 Feb 2024
  • Page
  • of
  • 161
ScholarVision Creations