Topic Review
P2X Receptor-Dependent Modulation
P2X receptors (P2XRs) are membrane ligand-gated ion channels and are members of the purinergic receptor family. Of the seven P2XR family members, only four of them (P2X1, P2X4, P2X6 and P2X7) have been shown to be expressed in MCs, with each of them playing an important role in regulating MC activities, such as Ca+ influx and degranulation. P2XRs are also present in neurons and glial cells, where their engagement may affect the development of neuroinflammatory pathologies such as the Alzheimer’s disease (AD), Parkinson’s disease (PD) and Multiple sclerosis (MS).
  • 372
  • 14 Oct 2021
Topic Review
Tumor-Associated Macrophages in Cervical Cancer
Both clinicopathological and experimental studies have suggested that tumor-associated macrophages (TAMs) play a key role in cervical cancer progression and are associated with poor prognosis in the respects of tumor cell proliferation, invasion, angiogenesis, and immunosuppression. Therefore, having a clear understanding of TAMs is essential in treating this disease. In this entry, the concept and categories of TAMs, the molecules educating TAMs in cervical cancer, the therapy development targeting TAMs, and the expectation for future study in cervical cancer research  will be discussed.
  • 372
  • 29 Mar 2022
Topic Review
The Microenvironment of the Pathogenesis of Cardiac Hypertrophy
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. 
  • 375
  • 14 Jul 2023
Topic Review
Spinal Cord Repair
Spinal cord injury (SCI) is a debilitating condition, often leading to severe motor, sensory, or autonomic nervous dysfunction. Spinal Cord Repair is to promote spinal cord tissue regeneration and functional recovery through regenerative medicine. 
  • 371
  • 10 Aug 2021
Topic Review
Mitochondrial Redox Signaling, Kidney Diseases
Redox signaling conveys external and internal signals between redox-sensitive receptors and the downstream effectors of fission machinery. Mitochondrial dynamics require the recruitment of proteins to mitochondria. Indeed, the importation of several proteins to mitochondria depends on proton electrochemical gradient H+created by ETS at the IMM, which is called the proton motive force (PMF).
  • 371
  • 21 Dec 2021
Topic Review
Inhibition of Replication Fork Formation and Progression
Over 1.2 million deaths are attributed to multi-drug-resistant (MDR) bacteria each year. Persistence of MDR bacteria is primarily due to the molecular mechanisms that permit fast replication and rapid evolution. As many pathogens continue to build resistance genes, current antibiotic treatments are being rendered useless and the pool of reliable treatments for many MDR-associated diseases is thus shrinking at an alarming rate. In the development of novel antibiotics, DNA replication initiation and the primosome are still largely underexplored targets.
  • 371
  • 05 Jun 2023
Topic Review
Cilia Distal Domain
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes’ remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. 
  • 371
  • 20 Sep 2023
Topic Review
Single-Cell RNA Sequencing for Plant Research
In recent years, advances in single-cell RNA sequencing (scRNA-seq) technologies have continued to change views on biological systems by increasing the spatiotemporal resolution of analysis to single-cell resolution. Application of scRNA-seq to plants enables the comprehensive characterization of both common and rare cell types and cell states, uncovering new cell types and revealing how cell types relate to each other spatially and developmentally. The use of sequencing technologies in plants to analyze genetic variation and metabolic regulation has played a major role in enhancing understanding of plant developmental processes and response to stimuli. However, the traditional sequencing method only generates average cell data and incapable of analyzing large number of cells, therefore losing cell heterogeneity information. The technical reason behind this limitation is that the material or study sample used for traditional sequencing contains several cells that are mixed to obtain whole-genome sequence information of all cells. However, the plant developmental process includes several regulatory factors and significant heterogeneity between different cells, which require a technology that enables cell heterogeneity and the discovery of new marker genes.
  • 370
  • 11 May 2022
Topic Review
Galectin-16 Gene in Human Cells and Tissues
Galectins are soluble β-galactoside binding proteins, which are involved in regulation of multiple cellular processes including cell growth, differentiation, apoptosis, and immune responses. Sixteen galectin genes have been identified in animals, 12 of which are expressed in humans. Out of all galectins, galectin-16 is poorly characterized yet and current knowledge suggest that this is a tissue-specific gene with functions and expression limited to placenta and brain among others.
  • 370
  • 06 Jun 2022
Topic Review
Glycosaminoglycans in Metastatic Renal Cell Carcinoma
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion.
  • 370
  • 17 Jan 2023
  • Page
  • of
  • 161
ScholarVision Creations