Topic Review
Fibroblast Memory in Development, Homeostasis and Disease
Fibroblasts are the major cell population in the connective tissue of most organs, where they are essential for their structural integrity. They are best known for their role in remodelling the extracellular matrix, however more recently they have been recognised as a functionally highly diverse cell population that constantly responds and adapts to their environment. Biological memory is the process of a sustained altered cellular state and functions in response to a transient or persistent environmental stimulus. While it is well established that fibroblasts retain a memory of their anatomical location, how other environmental stimuli influence fibroblast behaviour and function is less clear. The ability of fibroblasts to respond and memorise different environmental stimuli is essential for tissue development and homeostasis and may become dysregulated in chronic disease conditions such as fibrosis and cancer. 
  • 526
  • 04 Nov 2021
Topic Review
Fibroblast Growth Factor 23
FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. 
  • 503
  • 29 Mar 2022
Topic Review
Fibroblast Activation in Injured Heart
Fibrosis is characterized by the excessive accumulation of extra cellular matrix (ECM) components. It is a physiological response to pathological stimuli that helps to confine injuries. However, the prolonged activation of this process results in adverse tissue remodeling, which can ultimately affect the structure and function of organs (adverse remodeling).
  • 587
  • 29 Mar 2022
Topic Review
Fibrinolytic Regulators in Systemic Sclerosis
The regulators of fibrinolysis contain plasminogen (Plg) a proenzyme, which is converted to the active serine protease plasmin, a main component of the fibrinolytic system, through the action of a tissue-type plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR).
  • 326
  • 29 Nov 2021
Topic Review
Fibrin Glue and MSCs to Regenerate Nerve Injuries
Cell-based therapy is a promising treatment to favor tissue healing through less invasive strategies. Mesenchymal stem cells (MSCs) highlighted as potential candidates due to their angiogenic, anti-apoptotic and immunomodulatory properties, in addition to their ability to differentiate into several specialized cell lines. Cells can be carried through a biological delivery system, such as fibrin glue, which acts as a temporary matrix that favors cell-matrix interactions and allows local and paracrine functions of MSCs. MSCs favored axonal regeneration, remyelination of nerve fibers, as well as promoted an increase in the number of myelinated fibers, myelin sheath thickness, number of axons and expression of growth factors, with significant improvement in motor function recovery. Fibrin glue combined with MSCs has the potential to regenerate nervous system lesions.
  • 489
  • 24 Jan 2022
Topic Review
Fibrillin-1 Microfibrils in Organismal Physiology
Fibrillin-1 is the major structural component of the 10 nm-diameter microfibrils that confer key physical and mechanical properties to virtually every tissue, alone and together with elastin in the elastic fibers. Mutations in fibrillin-1 cause pleiotropic manifestations in Marfan syndrome (MFS), including dissecting thoracic aortic aneurysms, myocardial dysfunction, progressive bone loss, disproportionate skeletal growth, and the dislocation of the crystalline lens. 
  • 445
  • 15 Jun 2022
Topic Review
FGF Signaling in Vertebrate Embryos
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles.
  • 621
  • 08 Sep 2021
Topic Review
Ferrous Neuroglobin and Ferric Cytochrome c
Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection.
  • 228
  • 28 Aug 2023
Topic Review
Ferroptosis Modulation as Therapeutic Target for Glioblastoma Treatment
Glioblastoma multiforme is a lethal disease and represents the most common and severe type of glioma. Drug resistance and the evasion of cell death are the main characteristics of its malignancy, leading to a high percentage of disease recurrence and the patients’ low survival rate. Exploiting the modulation of cell death mechanisms could be an important strategy to prevent tumor development and reverse the high mortality and morbidity rates in glioblastoma patients. Ferroptosis is a recently described type of cell death, which is characterized by iron accumulation, high levels of polyunsaturated fatty acid (PUFA)-containing phospholipids, and deficiency in lipid peroxidation repair. Several studies have demonstrated that ferroptosis has a potential role in cancer treatment and could be a promising approach for glioblastoma patients.
  • 445
  • 08 Jul 2022
Topic Review
Ferroptosis Meets Cell-Cell Contacts
Ferroptosis is a regulated form of cell death characterized by iron-dependency and increased lipid peroxidation. Initially assumed to be selectively induced in tumour cells, there is increasing evidence that ferroptosis plays an important role in pathophysiology and numerous cell types and tissues. Deregulated ferroptosis has been linked to human diseases, such as neurodegenerative diseases, cardio-vascular disorders, and cancer. Along these lines, ferroptosis is a promising pathway to overcome therapy resistance of cancer cells. It is therefore of utmost importance to understand the cellular signalling pathways and the molecular mechanisms underlying ferroptosis regulation including context-specific effects mediated by the neighbouring cells through cell-cell contacts. 
  • 299
  • 04 May 2023
  • Page
  • of
  • 161
ScholarVision Creations