Topic Review
TRP Channels on the Progression of Liver Diseases
The liver serves as a vital organ with a primary metabolic function. In addition, it possesses the ability to synthesize and decompose proteins, regulate overall blood volume, eliminate toxins, and regulate immunity, all of which are crucial for maintaining normal physiological activities in the human body. 
  • 519
  • 25 Aug 2023
Topic Review
TRPC1 in Modulating Cancer Progression
Calcium ions (Ca2+) play an important role as second messengers in regulating a plethora of physiological and pathological processes, including the progression of cancer. Several selective and non-selective Ca2+-permeable ion channels are implicated in mediating Ca2+ signaling in cancer cells. In this review, we are focusing on TRPC1, a member of the TRP protein superfamily and a potential modulator of store-operated Ca2+ entry (SOCE) pathways. While TRPC1 is ubiquitously expressed in most tissues, its dysregulated activity may contribute to the hallmarks of various types of cancers, including breast cancer, pancreatic cancer, glioblastoma multiforme, lung cancer, hepatic cancer, multiple myeloma, and thyroid cancer.
  • 518
  • 27 May 2021
Topic Review
Notch Signaling in Inflammatory Diseases
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. The spectrum of diseases is as broad as the cellular functions controlled by Notch signaling. In various types of cancer, cerebrovascular diseases, and inherited disease syndromes, Notch signaling has been found to exert a detrimental impact as well as in inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE), systemic sclerosis (SSc), primary biliary cirrhosis, and atherosclerosis. 
  • 518
  • 17 Feb 2023
Topic Review
The Ferroptosis
Ferroptosis, which has been widely associated with many diseases, is an iron-dependent regulated cell death characterized by intracellular lipid peroxide accumulation. The term ‘ferroptosis’, first proposed in 2012, refers to a programmed cell death resulting from iron-dependent lipid peroxidation accumulation. Ferroptosis is distinct from other previously established regulated cell deaths and has specific morphological, biochemical, and genetic characteristics. It exhibits morphological, biochemical, and genetic characteristics that are unique in comparison to other types of cell death. The course of ferroptosis can be accurately regulated by the metabolism of iron, lipids, amino acids, and various signal pathways.
  • 518
  • 12 Jul 2022
Topic Review
Potential Role of Methylglyoxal in Ageing
Advances in molecular biology technology have piqued tremendous interest in glycometabolism and bioenergetics in homeostasis and neural development linked to ageing and age-related diseases. Methylglyoxal (MGO) is a by-product of glycolysis, and it can covalently modify proteins, nucleic acids, and lipids, leading to cell growth inhibition and, eventually, cell death. MGO can alter intracellular calcium homeostasis, which is a major cell-permeant precursor to advanced glycation end-products (AGEs). As side-products or signalling molecules, MGO is involved in several pathologies, including ageing.
  • 519
  • 29 Nov 2022
Topic Review
Personalized Cancer Therapy on Molecular Basis
Personalized cancer therapy is a treatment strategy that takes into account the molecular profile of patients in order to stratify them into groups that are more likely to benefit from different therapeutic approaches. Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types.
  • 517
  • 13 Jun 2022
Topic Review
Primary Biliary Cholangitis
Primary biliary cholangitis (PBC) is a chronic inflammatory autoimmune liver disease characterized by inflammation and damage of small bile ducts that frequently progress to liver cirrhosis and predominantly affects females. The key moment in the pathophysiology of the disease is loss of tolerance to PDC-E2, pyruvate subunit of the complex of dehydrogenase enzyme, located in the mitochondrial membrane. Combined genetic, epigenetic and environmental factors trigger the initial damage of the biliary epithelium in PBC, followed by the multilineage immune/inflammatory response to damaged cholangiocytes resulting in development of chronic biliary inflammatory disease.
  • 517
  • 27 Oct 2020
Topic Review
Histone H2B Mutations in Cancer
Oncohistone mutations refer to clustered mono-allelic missense mutations that often affect only one of the histone genes, the expression of which exhibits oncogenic features. Oncohistones have been an active area of research since the discovery of H3K27M and H3K36M. Recent effort to catalogue missense histone mutations in cancer have uncovered additional oncohistone mutations affecting other histones. 
  • 517
  • 16 Jul 2021
Topic Review
Secretory Autophagy Forges Therapy Resistant Microenvironment in Melanoma
Tumor microenvironment (TME) is a complex of many cell types and extracellular matrix that play an active role in regulating and sustaining melanoma tumor progression. The secretion of several molecules, by secretory autophagy or exosome release, stimulates the intercellular communication between the different components of the TME modulating tumor response.
  • 517
  • 15 Feb 2022
Topic Review
Glycosylated Molluscan Hemocyanins
The molluscan hemocyanins have complex carbohydrate structures with predominant N-linked glycans. Determination of glycans and glycopeptides was performed with the most common used methods for the analysis of biomolecules, including peptides and proteins like MALDI-TOF-TOF (time of flight), LC/ESI-MS, LC-Q-trap-MS/MS nano-ESI-MS and others. A novel acidic glycan structures with specific glycosylation positions were observed in Rapana venosa, Helix lucorum, Haliotis tuberculata, e.g. hemocyanins that enable a deeper insight into the glycosylation process.
  • 517
  • 29 Mar 2021
  • Page
  • of
  • 161
Video Production Service