Topic Review
Facilitative Sugar Transporters
Facilitative sugar transporters (GLUTs) are passive membrane transporters that are responsible for nearly all of our cells' sugar uptake. They mainly pass glucose and other similar substrates like fructose, mannose, ascorbate, and urate ions. They have been classified into three classes based on structure similarity and substrate affinity.
  • 387
  • 30 Aug 2022
Topic Review
Glial Cells in Physiological and Pathological States
Glial cells are the most abundant and widely distributed cells that maintain cerebral homeostasis in the central nervous system. They mainly include microglia, astrocytes, and the oligodendrocyte lineage cells. Moreover, glial cells may induce pathological changes, such as inflammatory responses, demyelination, and disruption of the blood–brain barrier, to regulate the occurrence and development of neurological diseases through various molecular mechanisms.
  • 802
  • 29 Aug 2022
Topic Review
Organoids for Precision Medicine in Malignant Pleural Mesothelioma
MPM is an aggressive tumor originating from pleural mesothelial cells. A characteristic feature of the disease is the dominant prevalence of therapeutically intractable inactivating alterations in TSGs, making MPM one of the most difficult cancers to treat and the epitome of a cancer characterized by a significant lack of therapy options and an extremely poor prognosis (5-year survival rate of only 5% to 10%). Extensive interpatient heterogeneity poses another major challenge for targeted therapy of MPM, warranting stratified therapy for specific subgroups of MPM patients. Accurate preclinical models are critical for the discovery of new therapies and the development of personalized medicine. Organoids, an in vitro ‘organ-like’ 3D structure derived from patient tumor tissue that faithfully mimics the biology and complex architecture of cancer and largely overcomes the limitations of other existing models, are the next-generation tumor model.
  • 297
  • 29 Aug 2022
Topic Review
Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells and Breast Cancer
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell–cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. 
  • 524
  • 26 Aug 2022
Topic Review
Nutrition as Personalized Medicine against SARS-CoV-2 Infections
Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is acknowledged that vulnerable people can suffer from mortal complications of COVID-19. Therefore, strengthening the immune system particularly in the most fragile people could help to protect them from infection. First, general nutritional status and food consumption patterns of everyone affect the effectiveness of each immune system. The effects of nutrition could impact the level of intestinal and genital microbiota, the adaptive immune system, and the innate immune system. Indeed, immune system cells and mediators, which are crucial to inflammatory reaction, are in the structures of fats, carbohydrates, and proteins and are activated through vitamins (vit) and minerals. Therefore, the association of malnutrition and infection could damage the immune response, reducing the immune cells and amplifying inflammatory mediators. Both amount and type of dietary fat impact on cytokine biology, that consequently assumes a crucial role in inflammatory disease. 
  • 366
  • 26 Aug 2022
Topic Review
Receptor for Advanced Glycation End Products (RAGE)
As a critical molecule in the onset and sustainment of inflammatory response, the receptor for advanced glycation end products (RAGE) has a variety of ligands, such as advanced glycation end products (AGEs), S100/calcium granule protein, and high-mobility group protein 1 (HMGB1). An increasing number studies have shown that RAGE ligand binding can initiate the intracellular signal cascade, affect intracellular signal transduction, stimulate the release of cytokines, and play a vital role in the occurrence and development of immune-related diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and Alzheimer’s disease. In addition, other RAGE signaling pathways can play crucial roles in life activities, such as inflammation, apoptosis, autophagy, and endoplasmic reticulum stress. Therefore, the strategy of targeted intervention in the RAGE signaling pathway may have significant therapeutic potential, attracting increasing attention.
  • 896
  • 25 Aug 2022
Topic Review
Natural Polyphenols as SERCA Activators
Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a key protein responsible for transporting Ca2+ ions from the cytosol into the lumen of the sarco/endoplasmic reticulum (SR/ER), thus maintaining Ca2+ homeostasis within cells. Accumulating evidence suggests that impaired SERCA function is associated with disruption of intracellular Ca2+ homeostasis and induction of ER stress, leading to different chronic pathological conditions. Therefore, appropriate strategies to control Ca2+ homeostasis via modulation of either SERCA pump activity/expression or relevant signaling pathways may represent a useful approach to combat pathological states associated with ER stress. Natural dietary polyphenolic compounds, such as resveratrol, gingerol, ellagic acid, luteolin, or green tea polyphenols, with a number of health-promoting properties, have been described either to increase SERCA activity/expression directly or to affect Ca2+ signaling pathways.
  • 572
  • 24 Aug 2022
Topic Review
miRNAs in Learning, Memory, and Cognitive Disorders
Learning and memory formation rely on the precise spatiotemporal regulation of gene expression, such as microRNA (miRNA)-associated silencing, to fine-tune gene expression for the induction and maintenance of synaptic plasticity. Some of these are involved in well-known mechanisms, such as the CREB-dependent signaling pathway, and some of their roles are in fear- and stress-related disorders, particularly cognitive impairment.
  • 527
  • 23 Aug 2022
Topic Review
Role of Interleukin-11 in Non-Small Cell Lung Cancer
Interleukin-11 (IL11), a stromal-cell derived pleiotropic cytokine with profibrotic and cellular remodeling properties, as a potential biomarker in non-small cell lung cancer (NSCLC). IL11 is an important tumor-promoting cytokine that that has both diagnostic and prognostic value in patients with NSCLC. Multiple in vitro studies confirm that IL11 activates known tumor-promoting signaling pathways and clinical studies link increased IL11 expression to poorer prognosis. 
  • 333
  • 22 Aug 2022
Topic Review
High-Throughput Screening Methods for Radiosensitivity and Resistance
The biological impact of ionizing radiation (IR) on humans depends not only on the physical properties and absorbed dose of radiation but also on the unique susceptibility of the exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired DNA lesions lead to various mutations, contributing to adverse health effects.
  • 470
  • 19 Aug 2022
  • Page
  • of
  • 161
Video Production Service