Topic Review
Terpenoid Transport in Plants
Contrary to the biosynthetic pathways of many terpenoids, which are well characterized and elucidated, their transport inside subcellular compartments and the secretion of reaction intermediates and final products at the short- (cell-to-cell), medium- (tissue-to-tissue), and long-distance (organ-to-organ) levels are still poorly understood, with some limited exceptions.
  • 471
  • 15 Feb 2023
Topic Review
Localisation of the Ca2+ Signal for Phagocytosis
Phagocytosis is one of the most polarised of all cellular activities. Both the stimulus (the target for phagocytosis) and the response (its internalisation) are focussed at just one part of the cell. At the locus, and this locus alone, pseudopodia form a phagocytic cup around the particle, the cytoskeleton is rearranged, the plasma membrane is reorganised, and a new internal organelle, the phagosome, is formed. The effect of signals from the stimulus must, thus, both be complex and yet be restricted in space and time to enable an effective focussed response. While many aspects of phagocytosis are being uncovered, the mechanism for the restriction of signalling or the effects of signalling remains obscure.
  • 309
  • 14 Feb 2023
Topic Review
Hallmarks and Significance of Apoptosis
Apoptosis is the elimination of functionally non-essential, neoplastic, and infected cells via the mitochondrial pathway or death receptor pathway. The process of apoptosis is highly regulated through membrane channels and apoptogenic proteins. Apoptosis maintains cellular balance within the human body through cell cycle progression. Loss of apoptosis control prolongs cancer cell survival and allows the accumulation of mutations that can promote angiogenesis, promote cell proliferation, disrupt differentiation, and increase invasiveness during tumor progression. The apoptotic pathway has been extensively studied as a potential drug target in cancer treatment. 
  • 1.6K
  • 14 Feb 2023
Topic Review
Endoplasmic Reticulum Stress and Cancer
Unfolded protein response (UPR) is an adaptive response which is used for re-establishing protein homeostasis, and it is triggered by endoplasmic reticulum (ER) stress. Specific ER proteins mediate UPR activation, after dissociation from chaperone Glucose-Regulated Protein 78 (GRP78). UPR can decrease ER stress, producing an ER adaptive response, block UPR if ER homeostasis is restored, or regulate apoptosis. 
  • 254
  • 13 Feb 2023
Topic Review
Radiotracers Available for Cancer and Disease
Various factors have been linked to abnormal metabolic reprogramming, including gene mutations, epigenetic modifications, altered protein epitopes, and their involvement in the development of disease, including cancer. The presence of multiple distinct hallmarks and the resulting cellular reprogramming process have gradually revealed that these metabolism-related molecules may be able to be used to track or prevent the progression of cancer. Consequently, translational medicines have been developed using metabolic substrates, precursors, and other products depending on their biochemical mechanism of action. It is important to note that these metabolic analogs can also be used for imaging and therapeutic purposes in addition to competing for metabolic functions. In particular, due to their isotopic labeling, these compounds may also be used to localize and visualize tumor cells after uptake.
  • 524
  • 10 Feb 2023
Topic Review
Co-Operation of Minor Kinases in Controlling Cell Cycle
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis.
  • 339
  • 09 Feb 2023
Topic Review
Cyclins and Cyclin-Dependent Kinases in Gastric Cancer
Gastric cancer predominantly occurs in adenocarcinoma form and is characterized by uncontrolled growth and metastases of gastric epithelial cells. The growth of gastric cells is regulated by the action of several major cell cycle regulators including Cyclins and Cyclin-dependent kinases (CDKs), which act sequentially to modulate the life cycle of a living cell. It has been reported that inadequate or over-activity of these molecules leads to disturbances in cell cycle dynamics, which consequently results in gastric cancer development.
  • 612
  • 08 Feb 2023
Topic Review
Sexual Dimorphism in Interstitial Lung Disease
Interstitial lung diseases (ILD) are a group of heterogeneous progressive pulmonary disorders, characterised by tissue remodelling and/or fibrotic scarring of the lung parenchyma. ILD patients experience lung function decline with progressive symptoms, poor response to treatment, reduced quality of life and high mortality. ILD can be idiopathic or associated with systemic or connective tissue diseases (CTD) but idiopathic pulmonary fibrosis (IPF) is the most common form. While IPF has a male predominance, women are affected more greatly by CTD and therefore associated ILDs. The mechanisms behind biological sex differences in these progressive lung diseases remain unclear. However, differences in environmental exposures, variable expression of X-chromosome related inflammatory genes and sex hormones play a role.
  • 388
  • 08 Feb 2023
Topic Review
Inflammasome-Mediated Cytokines
Liver cancer is one of the most lethal malignancies and is commonly diagnosed as hepatocellular carcinoma (HCC), a tumor type that affects about 90% of patients. Non-alcoholic steatohepatitis (NASH) and obesity are both risk factors for this disease. HCC initiation and progression are deeply linked with changes in the hepatic microenvironment, with cytokines playing key roles. The understanding of the pathogenic pathways that connect these disorders to liver cancer remains poor.
  • 246
  • 07 Feb 2023
Topic Review
Post-Translational Modifications
The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more when referring to oncogenes and onco-suppressors products. Ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence.
  • 434
  • 07 Feb 2023
  • Page
  • of
  • 161
Video Production Service