Topic Review
3D Cell Culture in Micro-Bioreactors
Bioreactors have proven useful for a vast amount of applications. Besides classical large-scale bioreactors and fermenters for prokaryotic and eukaryotic organisms, micro-bioreactors, as specialized bioreactor systems, have become an invaluable tool for mammalian 3D cell cultures. 
  • 915
  • 27 Jan 2021
Topic Review
The ROR Pathway
The WNT pathway is one of the major signaling cascades frequently deregulated in human cancer. Binding of WNT ligands to their respective receptors can trigger various downstream signaling cascades centered around cell proliferation, survival or migration. In particular, WNT signaling via the receptor tyrosine kinase-like orphan receptors (RORs) has gained increasing attention in cancer research due to their overexpression in a multitude of tumor entities.
  • 912
  • 19 Feb 2021
Topic Review
Sulfate Reduction in Intestinal Bacteria
Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects).
  • 912
  • 26 May 2021
Topic Review
Scribble Polarity Module in Neuroblasts
The Scribble polarity module is composed by Scribble (Scrib), Discs large 1 (Dlg1) and Lethal (2) giant larvae (L(2)gl), a group of highly conserved neoplastic tumor suppressor genes (TSGs) from flies to humans. Even though the Scribble module has been profusely studied in epithelial cell polarity, the number of tissues and processes in which it is involved is increasingly growing. Here we discuss the role of the Scribble module in the asymmetric division of Drosophila neuroblasts (NBs), as well as the underlying mechanisms by which those TSGs act in this process. Finally, we also describe what we know about the consequences of mutating these genes in impairing the process of asymmetric NB division and promoting tumor-like overgrowth.
  • 909
  • 29 Oct 2020
Topic Review
Stem Cells
It is now well accepted that the human body contains adult stem cells or in other words post-natal stem cells that are capable of differentiating into other tissues and can regenerate or repair damaged tissues. Over the last decades, stem cell hypothesis, the development of tissue deficits due to the inability of stem cells to replenish lost cells, has become a reality. Stem cells were in a way studied by radiobiologists well before it was proposed as a hypothesis. In fact, the initial theory of the development of radiation lesions’ “target cell theory” was based on radiation-induced cell loss. Target cell theory introduced by Puck and Marcus considers cell loss as the cardinal cause of radiation induced normal tissue damage or tumour ablation. In recent years, it has been shown that the process of development of radiation damage and the damage itself starts by molecular changes long before denudation of target cells. However, one cannot deny the fact that the ultimate lesions manifest as loss of functional cells. Most bodily tissues possess a pool of clonogenic cells that are mobilised in response to assaults such as trauma or radiation. Damage to the tissue is repaired by proliferation of clonogenic or tissue specific stem cells. Sterilisation of these clonogenic cells by radiation manifests as radiation damage. In mild cases as the damage is sensed, these clonogenic cells migrate to the site of damage, and together with local surviving clonogic cells, proliferate to repair the tissue. However, in severe cases of tissue repairs, there might not be enough surviving clonogenic cells as the site of damage or sufficient number of mobilised cells to reach the site and repair the damage. Thus, the damage gets established as a result of failure of endogenous stem cells to regenerate the damaged tissue.
  • 913
  • 31 Jan 2022
Topic Review
Islets of Langerhans
Islets of Langerhan are a crucial group of cells that enable the metabolization, physiologic control, and utilization of glucose, the primary energy source for cells. In situ physiologic intraportal hormone delivery from the pancreatic islets of Langerhans maintains basal normoglycemia with insulin and counterbalances hypoglycemia with glucagon. Insulin output can increase up ten-fold after a meal, and return rapidly to basal levels with no hysteresis. Type 1 diabetes represents an increasing and growingly financially unsustainable disease occurring due to the destruction of pancreatic islets of Langerhans. Current injectable insulin technologies fail to recreate physiologic glycemic control that is managed by islet cells resulting in a tight 1–2 mmol/L glycemic variance. In our opinion, exogenous subcutaneous insulin delivery, even when provided by the most ideal closed loop systems, cannot recreate this degree of dynamic control. Current therapies fail to adequately achieve euglycemia, leading to significant diabetes complications and a risk of mortality. Thus, developing a cell-based cure for type 1 diabetes through islet cell generation and transplantation remains an ideal to strive for. Achieving this goal, especially with stem cell therapies, as demonstrated by the Edmonton protocol (Shapiro 2000), demands complete understanding of embryological differentiation and physiology of the islets of Langerhans.
  • 906
  • 22 Sep 2021
Topic Review
Zebrafish Models of Neuroblastoma
For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis.
  • 895
  • 18 Mar 2021
Topic Review
Virus and Cellular Senescence
Cellular senescence is considered a stress response that protects cells against malignant transformation, facilitates tissue repair and development, and prevents virus replication. However, excessive accumulation of senescent cells is associated with chronic diseases such as age-related disorders, cancer, inflammatory diseases and virus replication. The relationship between virus and cellular senescence is proving to be very complex. Cellular senescence can be induced in response to virus infection restricting virus propagation. Some viruses are able to exploit the senescence program to improve their replication, while others have developed strategies to subvert senescence. Therapeutic approaches to eliminate senescent cells may be used as a mechanism to ameliorate age-related diseases, but they may have an impact on virus replication.
  • 896
  • 29 Dec 2020
Topic Review
Cellular Senescence in the Lung
Cellular senescence is a key process in physiological dysfunction developing upon aging or following diverse stressors including ionizing radiation. It describes the state of a permanent cell cycle arrest, in which proliferating cells become resistant to growth-stimulating factors. Senescent cells differ from quiescent cells, which can re-enter the cell cycle and from finally differentiated cells: morphological and metabolic changes, restructuring of chromatin, changes in gene expressions and the appropriation of an inflammation-promoting phenotype, called the senescence-associated secretory phenotype (SASP), characterize cellular senescence. The biological role of senescence is complex, since both protective and harmful effects have been described for senescent cells. While initially described as a mechanism to avoid malignant transformation of damaged cells, senescence can even contribute to many age-related diseases, including cancer, tissue degeneration, and inflammatory diseases, particularly when senescent cells persist in damaged tissues. Due to overwhelming evidence about the important contribution of cellular senescence to the pathogenesis of different lung diseases, specific targeting of senescent cells or of pathology-promoting SASP factors as potential therapeutic approach has been suggested. In this review, we summarize recent advances regarding the role of cellular (fibroblastic, endothelial, and epithelial) senescence in lung pathologies, with a focus on radiation-induced senescence. Among the different cells here, a central role of epithelial senescence is suggested.
  • 893
  • 29 Oct 2020
Topic Review
Membrane Fusion
Membrane fusion is a universal reaction that mediates a myriad of biological events, such as fertilization, organ and tissue growth, cancer metastasis, and multi-nucleated giant cell formation during an immune response .
  • 892
  • 06 Feb 2021
  • Page
  • of
  • 161
Video Production Service