Topic Review
Notch Signaling Function in Angiogenesis
The Notch signaling pathway is a major regulator of vascular morphogenesis, managing endothelial response to vascular growth factors, endothelial specialization, establishment and maintenance of vascular identity as venous or arterial and vascular maturation.
  • 2.2K
  • 03 Dec 2020
Topic Review
Selective Autophagy
Autophagy is a “self-eating” process that engulfs cellular contents for their subsequent digestion in lysosomes to engage the metabolic need in response to starvation or environmental insults. According to the contents of degradation, autophagy can be divided into bulk autophagy (non-selective autophagy) and selective autophagy. Bulk autophagy degrades non-specific cytoplasmic materials in response to nutrient starvation while selective autophagy targets specific cargoes, such as damaged organelles, protein aggregates, and intracellular pathogens. Selective autophagy has been documented to relate to the reproductive processes, especially for the spermatogenesis, fertilization, and biosynthesis of testosterone.
  • 1.1K
  • 01 Dec 2020
Topic Review
MicroRNA in Cervical Lesions
The regulatory functions of microRNA (miRNA) are involved in all processes contributing to carcinogenesis and response to viral infections. Cervical cancer in most cases is caused by the persistence of high-risk human papillomavirus (HR-HPV) infection. While oncogenic human papillomaviruses induce aberrant expression of many cellular miRNAs, this dysregulation could be harnessed as a marker in early diagnosis of HR-HPV infection, cervical squamous intraepithelial lesions, and cancer. In recent years, growing data indicate that miRNAs show specific patterns at various stages of cervical pathology, that gives hope for the development of non-invasive diagnostic tests that take into account the heterogeneity of tumor-related changes. Due to this heterogeneity resulting in difficult to predict clinical outcomes, precise molecular tools are needed to improve the diagnostic and therapeutic process.
  • 436
  • 30 Nov 2020
Topic Review
Ribosomal Protein L10
Eukaryotic cytoplasmic ribosomes are highly structured macromolecular complexes made up of four different ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs), which play a central role in the decoding of genetic code for the synthesis of new proteins. Over the past 25 years, studies on yeast and human models have made it possible to identify RPL10 (ribosomal protein L10), which is a constituent of the large subunit of the ribosome, as an important player in the final stages of ribosome biogenesis and in ribosome function.
  • 873
  • 30 Nov 2020
Topic Review
VDAC1
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate.
  • 965
  • 26 Nov 2020
Topic Review
PI3Ks, Targets of Cancer Therapeutics
Phosphatidylinositol 3-kinases (PI3Ks) are a family of enzymes responsible for phosphorylating the 3-hydroxyl group of the inositol ring of phosphatidylinositol.  PI3Ks are subdivided into three classes, class I, II, and III based on their structures, functions, and tissue distribution. PI3Ks are engaged in a range of cellular functions such as cell growth, proliferation differentiation, migration, survival, cell death, and intracellular trafficking. Many of these functions are related to the activity of class I PI3Ks family. Class I PI3Ks family generates phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5,)P3), which activates an assorted number of downstream molecules in the PI3K signaling pathway that are necessary for normal cellular growth and development. Elevated PI3K activity is considered as the hallmark of cancer, which is promoted by diverse oncogenes and growth factor receptors causing enhanced PI3K signaling. Several PI3K pathway inhibitors have been developed including pan-PI3K inhibitors and isoform-specific PI3K inhibitors. Some of the PI3K inhibitors have been approved for the treatment of various cancer types. Furthermore, to overcome drug resistance, improve efficacy, enhance synergy, and reduce toxicity, several different therapeutic approaches are being developed and some are in clinical trials. 
  • 633
  • 25 Nov 2020
Topic Review
Cellular Senescence in the Kidneys
Cellular senescence is a state of cell cycle arrest induced by repetitive cell mitoses or different stresses, which is implicated in various physiological or pathological processes. The beneficial or adverse effects of senescent cells depend on their transitory or persistent state. Recently, an increase in senescent cell burden has been reported in renal disorders. Here, we will summarize the molecular mechanisms of senescence and their implication in renal diseases. We will also discuss the differential impacts of transient versus persistent status of cellular senescence.
  • 746
  • 25 Nov 2020
Topic Review
Precision Medicine in Rare Diseases
The own patient-derived cells can be used to perform personalized pharmacological screening in genetic rare diseases. For precision medicine to be successful at the therapeutic level, in addition of the information provide from genomics, pharmacogenomics, metabolomics and proteomics, our proposal argues that it is also necessary to know the cellular response, and therefore the behavior of particular mutations in vitro, to various therapeutic options. Precision medicine relies on the assumption that different mutations and marked inter-individual genetic variation can contribute significantly to drug response. The goal of personalized medicine is to maximize the probability of therapeutic efficacy for an individual patient.
  • 545
  • 23 Nov 2020
Topic Review
Carotid Body
Overview of the physiology of the adult carotid body, the main peripheral chemoreceptor in mammals, which contains a physiologically relevant germinal niche with multipotent neural crest-derived stem cells and restricted progenitors from both neural and mesenchymal lineages. The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. 
  • 718
  • 23 Nov 2020
Topic Review
PIP2 Regulation in Cell
Phosphoinositides play a crucial role in regulating many cellular functions, such as actin dynamics, signaling, intracellular trafficking, membrane dynamics, and cell–matrix adhesion. Central to this process is phosphatidylinositol bisphosphate (PIP2). The levels of PIP2 in the membrane are rapidly altered by the activity of phosphoinositide-directed kinases and phosphatases, and it binds to dozens of different intracellular proteins. Despite the vast literature dedicated to understanding the regulation of PIP2 in cells over past 30 years, much remains to be learned about its cellular functions. Here, we focus on past and recent exciting results on different molecular mechanisms that regulate cellular functions by binding of specific proteins to PIP2 or by stabilizing phosphoinositide pools in different cellular compartments. Moreover, this review summarizes recent findings that implicate dysregulation of PIP2 in many diseases.
  • 2.4K
  • 19 Nov 2020
  • Page
  • of
  • 161
ScholarVision Creations