Topic Review
Tissue-Engineered Grafts with Minimally Manipulated Cells
Transfer of regenerative approaches into clinical practice is limited by strict legal regulation of in vitro expanded cells and risks associated with substantial manipulations. Isolation of cells for the enrichment of bone grafts directly in the Operating Room appears to be a promising solution for the translation of biomedical technologies into clinical practice. These intraoperative approaches could be generally characterized as a joint concept of tissue engineering in situ.
  • 410
  • 22 Nov 2022
Topic Review
Tissue Engineering of the Urethra—Clinical Applications
Tissue engineering (TE) is a promising approach for repair/substitution of damaged tissues and organs. Urethral strictures are common and serious health conditions that impair quality of life and may lead to serious organ damage. The TE approach is promising and effective, but many issues remain that need to be addressed for broader adoption of TE in urethral repair. Better design of trials, better cooperation of research groups and centralization could lead to reduction of costs and slowly proceed to commercialization and routine use of TE products for urethral reconstruction.
  • 460
  • 23 Dec 2021
Topic Review
Tissue Engineering Challenges for Cultivated Meat
Cultivated meat (CM) technology has the potential to disrupt the food industry—indeed, it is already an inevitable reality. This new technology is an alternative to solve the environmental, health and ethical issues associated with the demand for meat products. The global market longs for biotechnological improvements for the CM production chain. CM, also known as cultured, cell-based, lab-grown, in vitro or clean meat, is obtained through cellular agriculture, which is based on applying tissue engineering principles. In practice, it is first necessary to choose the best cell source and type, and then to furnish the necessary nutrients, growth factors and signalling molecules via cultivation media.
  • 325
  • 07 Apr 2023
Topic Review
Three-Dimensional Printing of Living Mycelium-Based Composites
The construction industry makes a significant contribution to global CO2 emissions. Material extraction, processing, and demolition account for most of its environmental impact. As a response, there is an increasing interest in developing and implementing innovative biomaterials that support a circular economy, such as mycelium-based composites. The mycelium is the network of hyphae of fungi. Mycelium-based composites are renewable and biodegradable biomaterials obtained by ceasing mycelial growth on organic substrates, including agricultural waste.
  • 619
  • 04 Sep 2023
Topic Review
Three-Dimensional Culture Systems
It is getting more and more clear that cancer cell culture models are switching from two-dimension to three-dimensional, in order to better reflect in vivo situations where tumor cells have to cope with a highly interactive three-dimensional microenvironment. Several such culture models have been reported, predominantly multicellular tumor spheroids (MCTS) and patient-derived tumor organoids (PDTO). These are used both to investigate fundamental aspects of cancer development and as test systems for innovative therapies against gastric cancer, the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The authors review the actual state of research in this field to provide an overview of the contribution of MCTS and PDTO, especially in the areas of molecular profiling, drug discovery, pathogen infection, and personalized medicine.
  • 745
  • 18 Feb 2021
Topic Review
Thermostable O6-alkylguanine-DNA Alkyltransferases
The genome of living cells is continuously exposed to endogenous and exogenous attacks, and this is particularly amplified at high temperatures. Alkylating agents cause DNA damage, leading to mutations and cell death; for this reason, a class of enzymes known as alkylguanine-DNA-alkyltransferases (AGTs) protects the DNA from mutations caused by alkylating agents, in particular in the recognition and repair of alkylated guanines in O6-position. The peculiar irreversible self-alkylation reaction of these enzymes triggered numerous studies, especially on the human homologue, in order to identify effective inhibitors in the fight against cancer. In modern biotechnology, engineered variants of AGTs are developed to be used as protein tags for the attachment of chemical ligands. In the last decade, research on AGTs from (hyper)thermophilic sources proved useful as a model system to clarify numerous phenomena, also common for mesophilic enzymes. This review traces recent progress in this class of thermozymes, emphasizing their usefulness in basic research and their consequent advantages for in vivo and in vitro biotechnological applications. 
  • 1.3K
  • 29 Oct 2020
Topic Review
Thermocatalytic Conversion of Glycerol to Propanediol
Significant research efforts have been focused on the catalytic transformation of glycerol for the synthesis of value-added chemicals owing to the rising prices of petroleum resources. Glycerol is an important byproduct due to its application to produce acrolein, glyceric acid, glycerol carbonate, and propanediol. Cu-based catalysts require the selective cleavage of the secondary C–O bond against the cleavage of the C–C bond in the hydrogenolysis of glycerol in order to produce 1,2-propanediol. Acid-catalyzed glycerol dehydration and metal-catalyzed intermediate hydrogenation are the two steps in glycerol hydrogenolysis. Glycerol hydrogenolysis has been primarily attempted in the liquid phase over different metal catalysts synthesized via the impregnation, co-precipitation, solid combustion and decomposition of metal–organic frameworks.
  • 149
  • 23 Oct 2023
Topic Review
Therapeutic Vaccines for Human Papillomavirus-Associated Malignancies
Prophylactic vaccines against human papillomavirus (HPV) have proven efficacy in those who have not been infected by the virus. As for therapeutic vaccines, they require the differentiated modulation of the immune system as both chronic infections and cancers are associated with specific immunosuppression and impairment of the immune surveillance system.
  • 385
  • 23 Dec 2022
Topic Review
Therapeutic Monoclonal Antibodies
Therapeutic monoclonal antibodies (mAbs) target specifically antigens and have proven their efficacy in many human diseases, especially autoimmune diseases (rheumatoid arthritis, lupus, psoriasis, inflammatory bowel diseases), cancers (breast, lung, colorectal, and hematological cancers). Their humanization has greatly enhanced their biocompatibility and decreased their side effects such as immunogenicity. The clinical success of mAbs has expanded their application domain to other pathologies such as infectious, migraine, asthma, and hereditary diseases.
  • 1.5K
  • 18 Jan 2021
Topic Review
Therapeutic miRNA-Enriched Extracellular Vesicles
Extracellular vesicles (EVs) are 50–300 nm vesicles secreted by eukaryotic cells. They can carry cargo (including miRNA) from the donor cell to the recipient cell. miRNAs in EVs can change the translational profile of the recipient cell and modulate cellular morphology. This endogenous mechanism has attracted the attention of the drug-delivery community in the last few years. EVs can be enriched with exogenous therapeutic miRNAs and used for treatment of diseases by targeting pathological recipient cells. However, there are some obstacles that need to be addressed before introducing therapeutic miRNA-enriched EVs in clinics.
  • 986
  • 19 Oct 2020
  • Page
  • of
  • 75
Video Production Service