Topic Review
Polyphenols against Skin Aging
Polyphenols représente a superfamily of diverse naturally occurring phytochemicals, which exert a particularly potent antioxidant activity, thereby contributing to delay skin aging.
  • 2.7K
  • 19 Nov 2020
Topic Review
Humic Substances
Humic substances are a very important part of our soil.  The topic is description of the structure of humic substances using NMR.  The NMR part is divided into two parts, liquid and solid state NMR.  The assignment of NMR spectra are discussed and the structural elements that can be deduced from the spectral information.  Principal Component Analysis is used as a tool to categorize the information.  Structural models are discussed.
  • 2.5K
  • 27 Oct 2020
Topic Review
Compositional Engineering of Perovskites
We give a systematic overview of compositional engineering by distinguishing the different defect-reducing mechanisms. Doping effects are divided into influences on: (1) crystallization; (2) lattice properties. Incorporation of dopant influences the lattice properties by: (a) lattice strain relaxation; (b) chemical bonding enhancement; (c) band gap tuning. The intrinsic lattice strain in undoped perovskite was shown to induce vacancy formation. The incorporation of smaller ions, such as Cl, F and Cd, increases the energy for vacancy formation. Zn doping is reported to induce strain relaxation but also to enhance the chemical bonding. The combination of computational studies using (DFT) calculations quantifying and qualifying the defect-reducing propensities of different dopants with experimental studies is essential for a deeper understanding and unraveling insights, such as the dynamics of iodine vacancies and the photochemistry of the iodine interstitials, and can eventually lead to a more rational approach in the search for optimal photovoltaic materials.
  • 2.5K
  • 28 Oct 2020
Topic Review
Multivariable Formulation of Surfactant-Oil-Water Systems
Surfactant-Oil-Water (SOW) systems are found in nature and synthetic products. They usually result in two immiscible phases, e.g., for two liquids, a water phase (often a brine), and an oily phase (which could be extremely complex as petroleum). Surfactant partitions between the two phases according to some physicochemical rules due to molecular interactions. There is a very particular formulation case in which SOW systems can form three immiscible phases, that is, two excess phases (water and oil) in equilibrium with a  so-called middle phase (because of an intermediate density that places it in the middle of a test tube). This middle phase is a so-called bicontinuous microemulsion which has no droplets dispersed in an external phase as a typical emulsion, but a complex single-phase structure similar to a disordered liquid crystal. When stirred, SOW systems can form multiple dispersed systems that can be described as macroemulsions or nanoemulsions depending on the drop size (O/W or W/O) or multiple emulsions (w/O/W or o/W/O) with droplets inside larger drops. Since the beginnings of the 20th century with Bancroft’s rule, the properties of these systems have been related to many thermodynamic variables, generally with one effect at a time. Nowadays, the generalized physicochemical concept of SOW systems with many formulation variables involved allows to make predictions in various application cases, even for very complex systems, as in enhanced oil recovery (EOR), crude oil dehydration, paints, foods, cosmetics and pharmaceutical formulations, that requires the control on 6-8 variables or even more. This is mainly because of the presence of mixtures of oils from linear alkanes to triglycerides or complex molecules perfumes, or a mixture of salts with cations from sodium to calcium or aluminum, and anions like chloride to phosphate. The complexity is even worse with mixtures of very different surface-active species, resulting in non-linear interactions.
  • 2.4K
  • 17 Aug 2021
Topic Review
Salt Bridges investigated by NMR
Salt bridges are interactions, electrostatic combined with hydrogen bonding, between oppositely charged residues, typically carboxylic acid anions and ammonium ions, provided they are close together.  For an illustration see Fig. 1. Salt bridges are of particular interest in proteins and other biomolecules.  In the present contribution salt bridges are investigated by means of 1H chemical shifts, determination of pKa values and deuterium isotope effect on 15N and 1H chemical shifts.  In the latter case model compounds like ammonium ions are also investigated and the use of deuterium isotope effects on chemical shifts are supported by Density Functional Theory (DFT) calculations.  The use of isotope effects on chemical shifts enables a distinction between salt bridges observed in the solid state by X-ray diffraction and those actually present in solution.
  • 2.3K
  • 27 Oct 2020
Topic Review
Reaction Mechanism of CO2 Methanation
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts.
  • 2.2K
  • 07 Mar 2022
Topic Review
Applications of Coacervates
Coacervates are one of the most intriguing systems in colloid chemistry. The term comes from the Latin words “co” (jointly) and “acerv” (a mound). Coacervation is a phenomenon in which a colloidal solution gets separated into colloid-rich and colloid-poor phases.
  • 2.1K
  • 15 Sep 2022
Topic Review
Noble Gases Magnetic Properties Explorations
In recent years, we have seen spectacular growth in the experimental and theoretical investigations of magnetic properties of small subatomic particles: electrons, positrons, muons, and neutrinos. However, conventional methods for establishing these properties for atomic nuclei are also in progress, due to new, more sophisticated theoretical achievements and experimental results performed using modern spectroscopic devices. In this review, a brief outline of the history of experiments with nuclear magnetic moments in magnetic fields of noble gases is provided. In particular, nuclear magnetic resonance (NMR) and atomic beam magnetic resonance (ABMR) measurements are included in this text. Various aspects of NMR methodology performed in the gas phase are discussed in detail. The basic achievements of this research are reviewed, and the main features of the methods for the noble gas isotopes: 3He, 21Ne, 83Kr, 129Xe, and 131Xe are clarified. A comprehensive description of short lived isotopes of argon (Ar) and radon (Rn) measurements is included. Remarks on the theoretical calculations and future experimental intentions of nuclear magnetic moments of noble gases are also provided.
  • 2.1K
  • 10 Dec 2020
Topic Review
Water radical cations
The study of water continues to provide surprises as evidenced by recent work on the surfaces of small droplets. Systems comprising numbers of water molecules and corresponding cations represent a topic of special interest, such as nuclear safety, functional biomolecules (DNA, RNA, and proteins) damage, proton transfer process and so on. To date, water radical cations have been created through wet nitrogen ionized as a result of subjected to electron-impact ionization, photoionization of a water molecular beam or vapor, even including in helium nanodroplets. They have also been generated through intermolecular coulomb decay process by high-energy photos or above 70 eV electrons impactions.For (H2O)2+•, a theoretical simulation led to both the structure resulting from proton transfer and the dimer cation structure. For larger water radical cations, these clusters are easily constructed from the (H2O)nH+ structures by substituting one of the water molecules, which is the next neighbor of the charged site for •OH radical. Besides the ultra-fast proton transfer reaction within (H2O)n+• , and between (H2O)n+• and its neighboring water molecules to form the proton transfer product, (H2O)n+• also present ultrafast charge migration from a solute M to (H2O)n+•.
  • 2.1K
  • 27 Oct 2020
Topic Review
Structure and Bonding in Planar Hypercoordinate Carbon Compounds
The term hypercoordination refers to the extent of the coordination of an element by its normal value. In the hypercoordination sphere, the element can achieve planar and/or non-planar molecular shape. Hence, planar hypercoordinate carbon species violate two structural rules: (i) The highest coordination number of carbon is four and (ii) the tetrahedral orientation by the connected elements and/or groups. The unusual planar orientations are mostly stabilized by the electronic interactions of the central atom with the surrounding ligands. Primary knowledge of the planar hypercoordinate chemistry will lead to its forthcoming expansion. Experimental and theoretical interests in planar tetracoordinate carbon (ptC), planar pentacoordinate carbon (ppC), and planar hexacoordinate carbon (phC) are continued. The proposed electronic and mechanical strategies are helpful for the designing of the ptC compounds. Moreover, the 18-valence electron rule can guide the design of new ptC clusters computationally as well as experimentally. However, the counting of 18-valence electrons is not a requisite condition to contain a ptC in a cluster. Furthermore, this ptC idea is expanded to the probability of a greater coordination number of carbon in planar orientations. Unfortunately, until now, there are no such logical approaches to designing ppC, phC, or higher-coordinate carbon molecules/ions. There exist a few global minimum structures of phC clusters identified computationally, but none have been detected experimentally. All planar hypercoordinate carbon species in the global minima may be feasible in the gas phase.
  • 2.0K
  • 26 Dec 2022
  • Page
  • of
  • 14