Topic Review
Anti-COVID-19 potential of Clove phytochemicals
The current COronaVIrus Disease 19 (COVID-19) pandemic caused by SARS-CoV-2 infection is enormously affecting the worldwide health and economy. In the wait for an effective global immunization, the development of a specific therapeutic protocol to treat COVID-19 patients is clearly necessary as a short-term solution of the problem. Drug repurposing and herbal medicine represent two of the most explored strategies for an anti-COVID-19 drug discovery. Clove (Syzygium aromaticum L.) is a well-known culinary spice that has been used for centuries in folk medicine in many disorders. Interestingly, traditional medicines have used clove since ancient times to treat respiratory ailments, whilst clove ingredients show antiviral and anti-inflammatory properties. Other interesting features are the clove antithrombotic, immunostimulatory, and antibacterial effects.
  • 6.0K
  • 13 May 2021
Topic Review
Extraction Methods of Medicinal Plants for Antimicrobial Textiles
Medicinal plants are the product of natural drug discoveries and have gained traction due to their pharmacological activities. Pathogens are everywhere, and they thrive in ideal conditions depending on the nutrients, moisture, temperature, and pH that increase the growth of harmful pathogens on surfaces and textiles.
  • 5.1K
  • 22 Aug 2022
Topic Review
Applications of Heterocyclic Compounds
Fluorescently labelled heterocyclic compounds are useful in bioanalytical applications, including in vivo imaging, high throughput screening, diagnostics, and light-emitting diodes. These compounds have various therapeutic properties, including antifungal, antitumor, antimalarial, anti-inflammatory, and analgesic activities. Different neutral fluorescent markers containing nitrogen heterocycles (quinolones, azafluoranthenes, pyrazoloquinolines, etc.) have several electrochemical, biological, and nonlinear optic applications. Photodynamic therapy (PDT), which destroys tumors and keeps normal tissues safe, works in the presence of molecular oxygen with light and a photosensitizing drugs (dye) to obtain a therapeutic effect. 
  • 5.0K
  • 18 Oct 2022
Topic Review
Classification of the Approved EGFR-TKIs
Targeting EGFR with small-molecule inhibitors is a valid strategy in cancer therapy. Since the approval of the first EGFR-TKI in 2003, a huge number of EGFR inhibitors were reported. Classification of these inhibitors could help the researchers to understand their structure-activity relationship. Herein, we introduce different types of classifications of the EGFR-TKIs, which received global approval for clinical use. In the following, the EGFR-targeting drugs are classified based on their chemistry, clinical use, target kinases, and the type of inhibition/interaction with EGFR. 
  • 3.4K
  • 25 Nov 2021
Topic Review
Five-Membered Heterocyclic Compounds
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring.
  • 2.4K
  • 16 Aug 2022
Topic Review
Ultra-High-Purity Aluminum
Properties of high-purity aluminum are the low magnetic permeability, the absence of low-temperature brittleness, as well as the increased strength and plasticity at low temperatures. These explain the classical application of high- to ultra-high-purity aluminum for the stabilization of superconductors running at cryogenic temperatures as low as −269 °C.
  • 2.3K
  • 01 Nov 2021
Topic Review
Advantages and Disadvantages of Covalent Inhibitors
The formation of covalent bonds that target proteins can offer drugs diverse advantages in terms of target selectivity, drug resistance, and administration concentration. The most important factor for covalent inhibitors is the electrophile (warhead), which dictates selectivity, reactivity, and the type of protein binding (i.e., reversible or irreversible) and can be modified/optimized through rational designs. Furthermore, covalent inhibitors are becoming more and more common in proteolysis, targeting chimeras (PROTACs) for degrading proteins, including those that are currently considered to be ‘undruggable’.
  • 2.3K
  • 10 May 2023
Topic Review
Epoxide Synthesis and Ring-Opening Reactions
This entry concentrates on some examples of success stories from the synthesis of approved medicines and drug candidates using epoxide chemistry in the development of robust and efficient syntheses at large scale. The focus is on those parts of each synthesis related to the substrate-controlled/diastereoselective and catalytic asymmetric synthesis of epoxide intermediates and their subsequent ring-opening reactions with various nucleophiles. These are described in the form of case studies of high profile pharmaceuticals spanning a diverse range of indications and molecular scaffolds such as heterocycles, terpenes, steroids, peptidomimetics, alkaloids and main stream small molecules. Representative examples include, but are not limited to the antihypertensive diltiazem, the antidepressant reboxetine, the HIV protease inhibitors atazanavir and indinavir, efinaconazole and related triazole antifungals, tasimelteon for sleep disorders, the anticancer agent carfilzomib, the anticoagulant rivaroxaban the antibiotic linezolid and the antiviral oseltamivir. Emphasis is given on aspects of catalytic asymmetric epoxidation employing metals with chiral ligands particularly with the Sharpless and Jacobsen–Katsuki methods as well as organocatalysts such as the chiral ketones of Shi and Yang, Pages's chiral iminium salts and typical chiral phase transfer agents.
  • 2.1K
  • 09 Oct 2020
Topic Review
Xanthones
Xanthone is an aromatic oxygenated heterocyclic molecule, with a dibenzo-γ-pirone scaffold, known as 9H-xanthen-9-one, with the molecular formula of C13H8O2.
  • 2.1K
  • 23 Feb 2021
Topic Review
Phlorotannins
Phlorotannins represent an important group of phenolic compounds, exclusively occurring in brown algae that can form simple structures of 126 Da to very large and complex polymers. Although the biosynthetic pathway of these compounds is still not consensual, it is known that they are formed via C–C and/or C–O–C oxidative coupling of several monomeric units of phloroglucinol, which in turn is known to be biosynthesized through the acetate–malonate pathway. According to the type of linkage formed between these units and the number of hydroxyl groups, phlorotannins can be classified in four sub-classes, namely phlorethols and fuhalols (ether linkages), fucols (aryl-aryl linkages), fucophlorethols (aryl-aryl and ether linkages), and eckols and carmalols (dibenzodoxine linkage).
  • 1.9K
  • 13 Oct 2023
  • Page
  • of
  • 34