Topic Review
Salt's Thermophysical Parameters and Thermal Energy Storage Costs
Magnesium nitrate hexahydrate (MNH) has the appropriate phase transition temperature for use in solar thermal energy storage. Understanding the thermophysical parameters of the substances, supported by the results of experimental studies in solar installations, may prove helpful for the environmental assessment of these substances.
  • 381
  • 18 Jan 2023
Topic Review
Copper-Based Metal–Organic Frameworks for Click Chemistry
In the extensive terrain of catalytic procedures for the synthesis of organic molecules, metal–organic frameworks (MOFs) as heterogenous catalysts have been investigated in a variety of chemical processes, including Friedel–Crafts reactions, condensation reactions, oxidations, and coupling reactions, and utilized owing to their specific properties such as high porosity, tuneability, extraordinary catalytic activity, and recyclability.
  • 434
  • 13 Jan 2023
Topic Review
Heteronuclear Metal Complexes with Anticancer Activity
Transition metal complexes have been deeply studied for different applications, such as catalysis, antimicrobial, and also antitumoral drugs. Platinum complexes are probably the most well-known and studied in the field of anticancer compounds, also thanks to the omnipresence of cisplatin and its derivatives as a starting point. Two promising new strategies to increase the efficacy of transition metal-based complexes have been described. First, the possibility of assembling two biologically active fragments containing different metal centres into the same molecule were considered, thus obtaining a heterobimetallic complex. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed.
  • 452
  • 09 Jan 2023
Topic Review
Water-Gas Shift Reaction
The water-gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized. Before the early 20th century, hydrogen was obtained by reacting steam under high pressure with iron to produce iron, iron oxide and hydrogen. With the development of industrial processes that required hydrogen, such as the Haber–Bosch ammonia synthesis, a less expensive and more efficient method of hydrogen production was needed. As a resolution to this problem, the WGSR was combined with the gasification of coal to produce a pure hydrogen product. As the idea of hydrogen economy gains popularity, the focus on hydrogen as a replacement fuel source for hydrocarbons is increasing.
  • 4.2K
  • 22 Nov 2022
Topic Review
Internal Modification and Structure Optimization of MOFs
Since the advent of metal–organic frameworks (MOFs), researchers have paid extensive attention to MOFs due to their determined structural composition, controllable pore size, and diverse physical and chemical properties. Reasonable internal modification and structure optimization of MOFs may not only make the photosensitive units orderly, but also shorten the distance between the photosensitive units and the catalytic centers, so as to improve the efficiency of photogenerated electrons separation and accelerate the rate of hydrogen evolution.
  • 325
  • 08 Nov 2022
Topic Review
Uranium Sulfate
Uranium sulfate (U(SO4)2) is a water-soluble salt of uranium. It is a very toxic compound. Uranium sulfate minerals commonly are widespread around uranium bearing mine sites, where they usually form during the evaporation of acid sulfate-rich mine tailings which have been leached by oxygen-bearing waters. Uranium sulfate is a transitional compound in the production of Uranium hexafluoride. It was also used to fuel aqueous Homogeneous Reactors.
  • 510
  • 28 Oct 2022
Topic Review
Compounds of Thorium
Many compounds of thorium are known, this is because thorium and uranium are the most stable and accessible actinides and are the only actinides that can be studied safely and legally in bulk in a normal laboratory. As such, they have the best-known chemistry of the actinides, along with that of plutonium, as the self-heating and radiation from them is not enough to cause radiolysis of chemical bonds as it is for the other actinides. While the later actinides from americium onwards are predominantly trivalent and behave more similarly to the corresponding lanthanides, as one would expect from periodic trends, the early actinides up to plutonium (thus including thorium and uranium) have relativistically destabilised and hence delocalised 5f and 6d electrons that participate in chemistry in a similar way to the early transition metals of group 3 through 8: thus, all their valence electrons can participate in chemical reactions, although this is not common for neptunium and plutonium.
  • 1.4K
  • 25 Oct 2022
Topic Review
Organometallic Chemistry of Guanidines
Guanidines, nitrogen-rich compounds, appear as one such potential alternatives as ligands or proligands. In addition to occurring in a plethora of natural compounds, and thus in compounds of pharmacological use, guanidines allow a wide variety of coordination modes to different metal centers along the periodic table, with their monoanionic chelate derivatives being the most common.
  • 505
  • 18 Oct 2022
Topic Review
Zirconolite and Murataite for the Immobilization of Actinides
Zirconolite is highly stable in nature, with isotope systems that have been closed for hundreds of million years, making it possible for age determination. Murataite is a very rare mineral, its synthetic counerpart was first discovered in the Synroc matrix from defense waste obtained by sintering. Synthetic zirconolie and murataite can be applied for nuclear waste immobilization. 
  • 952
  • 14 Sep 2022
Topic Review
Structure and Functions of Aβ and Tau Proteins
The amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD.
  • 530
  • 29 Aug 2022
  • Page
  • of
  • 9