Topic Review
Processing Properties of Starch
Starch is the second most abundantly available natural polymer in the world, after cellulose. If we add its biodegradability and non-toxicity to the natural environment, it becomes a raw material very attractive for the food and non-food industries. However, in the latter case, mainly due to the high hydrophilicity of starch, it is necessary to carry out many more or less complex operations and processes. One of the fastest growing industries in the last decade is the processing of biodegradable materials for packaging purposes. This is mainly due to awareness of producers and consumers about the dangers of unlimited production and the use of non-degradable petroleum polymers.
  • 1.8K
  • 05 Apr 2021
Topic Review
Metal Current Collector for LMBs
Lithium Metal Anode (LMA) has been considered as the promising candidate, owing to their high theoretical gravimetric capacity, low electrochemical potential, and low density, to replace the conventional carbon based anode materials of lithium-ion batteries (LIBs). Unfortunately, the inherent hyperactive and volume expansion issues of Lithium (Li) leads to the formation of notorious Li dendrite growth and unstable solid-electrolyte-interphase (SEI), eventually hindering the practical application of lithium metal batteries (LMBs). To resolve this issue, one of the effective approach is to engineer three dimensional (3D) porous metal based Li host owing to their chemical and mechanical stability, high electronic conductivity and low cost. In this review, the challenges and strategies to suppress the Li dendrite growth are presented. Then the design principles and effectiveness of different kinds of metal based Li host to accommodate and buffer the volume expansion of Li for guiding the uniform Li deposition  are summarized. Then the special attention is paid to the lithiophilic coating or decoration which can further control the initial Li deposition and lowers the nucleation and voltage overpotential in 3D porous metal framework during Li plating/stripping cycles. Finally, the conclusion and perspective are given on the current status, challenges and future  research pathway toward advancement of LMA for dendrite-free and improved battery performance.
  • 1.8K
  • 28 Oct 2020
Topic Review
Aromatic Water Pollutants
In recent years, the intensification of human activities including rapid urbanization, industrialization, population, and economic growth, led to an increase in waste production and energy demand. Most importantly such activities pose concerns for health, energy security and climate changes. Hazardous volatile organic compounds, VOC, and aromatic organic compounds, AOC, are being generated from the activities of many vital industries like mining and petrochemicals. They are instrumental in the economic growth of many countries and their products are regarded as privileges to modern communities. Nevertheless, they are toxic and carcinogenic thus, these wastes have been classified as “hazardous”. The simultaneous treatment of organic pollutants and energy recovery is an attractive solution to reduce pollution in water, air, and soil as well as provide alternative clean energy sources. Hydrogen could be generated from organic pollutants in water through photocatalysis. Photocatalysis refers to the oxidation and reduction, redox, reactions on semiconductor surfaces, mediated by the valence band holes and conduction band electrons, which are generated by the absorption of ultraviolet or visible light radiation. Compared to traditional oxidation processes, photocatalytic redox reaction operates at ambient conditions without a high temperature or high pressure, and many recalcitrant organic contaminants can be degraded without the addition of chemical oxidants, hence it is fully green process. Among the various photocatalysts, TiO2, as the most widely employed “golden” photocatalyst, has been largely used in photocatalysis, due to its chemical stability, nontoxicity, and low cost. In the last two decades, TiO2 photocatalysis has expanded very quickly, having undergone various development‐related energy issues and environmental issues, such as direct solar H2O splitting into H2 and the decomposition of pollutants in air and H2O at low concentrations. Although great progress has been made in TiO2 photocatalysis, much remains unknown, which raises an interesting challenge not only for engineers but also for basic scientists. a typical photocatalytic reaction in TiO2 photocatalysis contains many fundamental processes, including charge carrier formation, separation, relaxation, trapping, transfer, recombination, and transportation.
  • 1.7K
  • 24 May 2021
Topic Review
Seaweed Polysaccharide Based Products/Materials
Among the various natural polymers, polysaccharides are one of the oldest biopolymers present on the earth. They play a very crucial role in the survival of both animals and plants. Due to the presence of hydroxyl functional groups in most of the polysaccharides, it is easy to prepare their chemical derivatives. Several polysaccharide derivatives are widely used in a number of industrial applications. The polysaccharides such as cellulose, starch, chitosan, etc. have several industrial applications but due to some distinguished characteristic properties, seaweed polysaccharides are preferred in a number of applications.
  • 1.7K
  • 17 Sep 2021
Topic Review
β-Ionone
β-Ionone is a natural plant volatile compound, and it is the 9,10 and 9′,10′ cleavage product of β-carotene by the carotenoid cleavage dioxygenase. β-Ionone is widely distributed in flowers, fruits, and vegetables. β-Ionone and other apocarotenoids comprise flavors, aromas, pigments, growth regulators, and defense compounds; serve as ecological cues; have roles as insect attractants or repellants, and have antibacterial and fungicidal properties. In recent years, β-ionone has also received increased attention from the biomedical community for its potential as an anticancer treatment and for other human health benefits. However, β-ionone is typically produced at relatively low levels in plants. Thus, expressing plant biosynthetic pathway genes in microbial hosts and engineering the metabolic pathway/host to increase metabolite production is an appealing alternative.
  • 1.7K
  • 26 Apr 2021
Topic Review
Biosensors for Malaria Biomarkers
This entry discusses recent advances in the development of biosensors for the purposes of malaria diagnostics. It underscore relevant challenges that have defined the gap between biosensor development and their successful utilization in routine clinical practice within resource-limitted settings. It proposes a way to think about developing biosensors that are suitable for biomedical diagnostics applications.
  • 1.7K
  • 30 Oct 2020
Topic Review
High Performance Liquid Chromatography with Fluorescence Detection Methods
Steroids are compounds widely available in nature and synthesized for therapeutic and medical purposes. Although several analytical techniques are available for the quantification of steroids, their analysis is challenging due to their low levels and complex matrices of the samples. The efficiency and quick separation of the high performance liquid chromatography (HPLC) combined with the sensitivity, selectivity, simplicity, and cost-efficiency of fluorescence, make HPLC coupled to fluorescence detection (HPLC-FLD) an ideal tool for routine measurement and detection of steroids.
  • 1.7K
  • 01 Aug 2022
Topic Review
Alkylimidazoles
Alkylimidazoles have good complexing properties, also they are  cheap so can be successfully used in the separation of metal ions from aqueous solutions.
  • 1.7K
  • 16 Dec 2020
Topic Review
Extraction Functional Ingredients from Jackfruit
Various studies in the literature showed the effect of conventional and non-conventional extraction methods to obtain jackfruit functional ingredients; among the non-conventional methods, some use emerging technologies to extract or as a pre-treatment. Among the studies using conventional extraction, applying solvents such as methanoland oxalic acidstands out, as well as the extraction with hot water. Regarding extraction by emerging technologies, radio frequency-assistedand supercritical fluid (SFE) with CO2extractions have attracted attention owing to their less negative impact on the environment and safety of the final product obtained in comparison with other methods using non-conventional technologies.
  • 1.6K
  • 26 Aug 2021
Topic Review
Electrodermal Activity Data Collection
The electrodermal activity (EDA) signal is an electrical manifestation of the sympathetic innervation of the sweat glands. EDA has a history in psychophysiological (including emotional or cognitive stress) research since 1879, but it was not until recent years that researchers began using EDA for pathophysiological applications like the assessment of fatigue, pain, sleepiness, exercise recovery, diagnosis of epilepsy, neuropathies, depression, and so forth. The advent of new devices and applications for EDA has increased the development of novel signal processing techniques, creating a growing pool of measures derived mathematically from the EDA. For many years, simply computing the mean of EDA values over a period was used to assess arousal. Much later, researchers found that EDA contains information not only in the slow changes (tonic component) that the mean value represents, but also in the rapid or phasic changes of the signal. The techniques that have ensued have intended to provide a more sophisticated analysis of EDA, beyond the traditional tonic/phasic decomposition of the signal. With many researchers from the social sciences, engineering, medicine, and other areas recently working with EDA, it is timely to summarize and review the recent developments and provide an updated and synthesized framework for all researchers interested in incorporating EDA into their research.
  • 1.6K
  • 30 Oct 2020
  • Page
  • of
  • 30