Topic Review
Resistive Chemosensors for the Detection of CO
Carbon monoxide (CO) is a colorless, odorless, and tasteless gas, resulting mainly from the incomplete combustion of fossil fuels and thus largely spread in urban environments or regions with a high traffic density. The sensors that can detect toxic gas are usually characterized by the presence of CO absorption sites in their structures, with the Langmuir reaction model offering a good description of the reaction mechanism involved in capturing the gas.
  • 472
  • 19 Apr 2022
Topic Review
Resistance of PVD Coatings
Due to the increasing maintenance costs of hydraulic machines related to the damages caused by cavitation erosion and/or erosion of solid particles, as well as in tribological connections, surface protection of these components is very important. Up to now, numerous investigations of resistance of coatings, mainly nitride coatings, such as CrN, TiN, TiCN, (Ti,Cr)N coatings and multilayer TiN/Ti, ZrN/CrN and TN/(Ti,Al)N coatings, produced by physical vapor deposition (PVD) method using different techniques of deposition, such as magnetron sputtering, arc evaporation or ion plating, to cavitation erosion, solid particle erosion and wear have been made. The results of these investigations, degradation processes and main test devices used are presented in this paper. An effect of deposition of mono- and multi-layer PVD coatings on duration of incubation period, cumulative weight loss and erosion rate, as well as on wear rate and coefficient of friction in tribological tests is discussed. It is shown that PVD coating does not always provide extended incubation time and/or improved resistance to mentioned types of damage. The influence of structure, hardness, residence to plastic deformation and stresses in the coatings on erosion and wear resistance is discussed. In the case of cavitation erosion and solid particle erosion, a limit value of the ratio of hardness (H) to Young’s modulus (E) exists at which the best resistance is gained. In the case of tribological tests, the higher the H/E ratio and the lower the coefficient of friction, the lower the wear rate, but there are also many exceptions
  • 2.4K
  • 13 Oct 2020
Topic Review
Resins and Additive Manufacturing in Stereolithographies
Since its inception in 1984, 3D printing has revolutionized manufacturing by leveraging the additivity principle and simple material–energy coupling. Stereolithography, as the pioneering technology, introduced the concept of photopolymerization with a single photon. This groundbreaking approach not only established the essential criteria for additive processes employing diverse localized energies and materials, including solid, pasty, powdery, organic, and mineral substances, but also underscored the significance of light–matter interactions in the spatial and temporal domains, impacting various critical aspects of stereolithography’s performance.
  • 262
  • 24 Aug 2023
Topic Review
Resin-Dentine Interfaces in Polymeric Dental Adhesives
Restorative and adhesive dentistry has witnessed extraordinary improvements after the innovations in contemporary adhesive materials. These new adhesive systems do not require any mechanical retention through features such as dovetails, grooves, sharp internal angles, and undercuts. For the success of modern restorative dentistry, these adhesive systems play a critical role, as sound tooth structure would be preserved using these newer systems. In addition, by using these contemporary and advanced adhesive systems, secondary caries due to microleakage may be reduced or eliminated.
  • 480
  • 25 Aug 2022
Topic Review
Reservoir-Type Intravesical Delivery Systems
Treatment of bladder cancer remains a critical unmet need and requires advanced approaches, particularly the development of local drug delivery systems. The physiology of the urinary bladder causes the main difficulties in the local treatment of bladder cancer: regular voiding prevents the maintenance of optimal concentration of the instilled drugs, while poor permeability of the urothelium limits the penetration of the drugs into the bladder wall. Therefore, great research efforts have been spent to overcome these hurdles, thereby improving the efficacy of available therapies. The explosive development of nanotechnology, polymer science, and related fields has contributed to the emergence of a number of nanostructured vehicles (nano- and micro-scale) applicable for intravesical drug delivery.
  • 189
  • 06 Dec 2023
Topic Review
Research Status of Graphene Polyurethane Composite Coating
Graphene material has a variety of excellent properties and applications in energy storage, biomaterials, photoelectric devices, and other fields. With the progress of nanotechnology, graphene nanomaterials have shown their advantages in the field of new nano-corrosion coatings with their high barrier structure. In addition, polyurethane is also widely used in the field of anti-corrosion coatings due to its excellent chemical resistance, mechanical properties, and weathering resistance. The preparation of composite coatings by combining graphene nanomaterials with traditional polyurethane (PU) coatings has opened up a new way for the research and development of new anticorrotic coatings.
  • 676
  • 22 Feb 2022
Topic Review
Research Progress on Preparation Methods of Skutterudites
Thermoelectric material is a new energy material that can realize direct conversion of thermal energy and electric energy. It has important and wide applications in the fields of the recycling of industrial waste heat and automobile exhaust, efficient refrigeration of the next generation of integrated circuits and full spectrum solar power generation. Skutterudites thermoelectric material has attracted much attention because of their excellent electrical transport performance in the medium temperature region. In order to obtain skutterudites thermoelectric materials with excellent properties, it is indispensable to choose an appropriate preparation method.
  • 633
  • 28 Sep 2022
Topic Review
Required Properties of the Corneal Endothelial Implants
Treating corneal diseases arising from injury to the corneal endothelium necessitates donor tissue, but these corneas are extremely scarce. As a result, researchers are dedicating significant efforts to exploring alternative approaches that do not rely on donor tissues. Among these, creating a tissue-engineered scaffold on which corneal endothelial cells can be transplanted holds particular fascination. Numerous functional materials, encompassing natural, semi-synthetic, and synthetic polymers, have already been studied in this regard.
  • 207
  • 17 Jul 2023
Topic Review
Reproducibility Evaluation of Urinary Peptide Detection Using CE-MS
In recent years, capillary electrophoresis coupled to mass spectrometry (CE-MS) has been increasingly applied in clinical research especially in the context of chronic and age-associated diseases, such as chronic kidney disease, heart failure and cancer. Biomarkers identified using this technique are already used for diagnosis, prognosis and monitoring of these complex diseases, as well as patient stratification in clinical trials. CE-MS allows for a comprehensive assessment of small molecular weight proteins and peptides (<20 kDa) through the combination of the high resolution and reproducibility of CE and the distinct sensitivity of MS, in a high-throughput system. In this study we assessed CE-MS analytical performance with regards to its inter- and intra-day reproducibility, variability and efficiency in peptide detection, along with a characterization of the urinary peptidome content. To this end, CE-MS performance was evaluated based on 72 measurements of a standard urine sample (60 for inter- and 12 for intra-day assessment) analyzed during the second quarter of 2021. Analysis was performed per run, per peptide, as well as at the level of biomarker panels. The obtained datasets showed high correlation between the different runs, low variation of the ten highest average individual log2 signal intensities (coefficient of variation, CV < 10%) and very low variation of biomarker panels applied (CV close to 1%). The findings of the study support the analytical performance of CE-MS, underlining its value for clinical application.
  • 348
  • 17 Dec 2021
Topic Review
Reprocessable Photodeformable Azobenzene Polymers
Photodeformable azobenzene (azo) polymers are a class of smart polymers that can efficiently convert light energy into mechanical power, holding great promise in various photoactuating applications. They are typically of crosslinked polymer networks with highly oriented azo mesogens embedded inside. Upon exposure to the light of appropriate wavelength, they experience dramatic order parameter change following the configuration change of the azo units. This could result in the generation and accumulation of the gradient microscopic photomechanical force in the crosslinked polymer networks, thus leading to their macroscopic deformation. Most of the presently developed photodeformable azo polymers have stable chemically crosslinked networks, which make their reprocessing impossible, thus limiting their large scale applications. To solve this problem, reprocessable photodeformable azo polymers have been recently developed by introducing dynamic crosslinking networks (including physically crosslinked and dynamic covalent bond-crosslinked ones) into their structures. In addition, some uncrosslinked photodeformable azo polymers have also been reported and constitute one special type of reprocessable photodeformable azo polymers, whose photodeformation behaviors are mainly induced by the selective reorientation of the azo moieties (become perpendicular to the polarization direction of the polarized light) under the irradiation of either polarized blue light or interfering polarized light.
  • 588
  • 30 Aug 2021
  • Page
  • of
  • 467
Video Production Service