Topic Review
Smart Nanomaterials for Biomedical Applications
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called “smart” nanomaterials.
  • 637
  • 24 Feb 2021
Topic Review
Smart Mask
The concept of “intelligence” in a material refers to its ability to sense, respond or react to external stimuli or changes in environmental conditions. Heated research interests have focused on the synthesis, optimization and application of materials that can respond to their environment or adjust their properties given external stimuli. Increased involvement of such intelligent or smart materials is witnessed in filtration membrane design. Face masks as wearables with integrated multifunctional sensors that detect human body physiological signals and surrounding environmental status have broadened the practical applications of their conventional function as air filters. 
  • 392
  • 09 Mar 2023
Topic Review
Smart ECM-Based Electrospun Biomaterials
Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the “click” concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the “click” reactions. Here, we provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials and propose a design of a smart ECM-based electrospun system suitable for skeletal muscle tissue regeneration.
  • 1.3K
  • 24 Sep 2020
Topic Review
Smart Drug Delivery
Drug delivery systems based on deformable peptides have been widely studied in tumor targeted therapy, for example, proton-driven tumor vaccine composed of deformable peptides for tumor immunotherapy, and an intracellular delivery system of chimeric peptides based on transmembrane peptides for acute liver injury in mice. With the help of software, researchers can take tiny strands of DNA and fold them into complex structures, complete with components such as rotors and hinges that can move and perform tasks, such as drug delivery and cargo handling. A nano-robot based on DNA origami technology can precisely locate tumor tissue and effectively inhibit tumor growth and metastasis.
  • 631
  • 08 Nov 2021
Topic Review
Smart Contrast Agents in MRI
Zinc and copper are essential cations involved in numerous biological processes; and variations in their concentrations can cause diseases; such as neurodegenerative diseases; diabetes and cancers. Hence, the detection and quantification of these cations is of utmost importance for the early diagnosis of disease. MRI responsive contrast agents (mainly Lanthanide 3+ complexes), relying on a change in state of the MRI active part upon interaction with the cation of interest e.g. switch ON/OFF or vice versa, have been successfully utilized to detect zinc and are now being developed to detect Copper(II). These paramagnetic probes mainly exploit the relaxation-based properties (T1-based contrast agents), but also the paramagnetic induced hyperfine shift properties (paraCEST and parashift probes) of the contrast agents. The challenges encountered going from zinc to copper(II) detection are discussed. Depending on the response mechanism, the use of fast-field cycling MRI seems promising to increase the detection field while keeping a good response. In vivo applications of cation responsive MRI probes are only at their infancy and the recent developments are described, along with the associated quantification problems.
  • 893
  • 08 Jan 2021
Topic Review
Smart Bioinks for Printing Human Tissue Models
A bioink is a mixture of materials and biological molecules or cells to be used for bioprinting. Most bioinks are hydrogels, highly hydrated polymeric networks used to homogenously encapsulate cells by mimicking the natural extracellular matrix found in vivo. Hydrogels must meet certain characteristics to ensure they can support cell survival and function.
  • 907
  • 25 Apr 2022
Topic Review
Smart Biogenic Packaging
Smart biogenic packaging is an innovative, swiftly emerging concept, where sustainability and real-time monitoring of food are coupled together, ensuring safe and healthy food, alongside commercial and ecological prosperity. Smart biogenic packaging integrates active and intelligent packaging solutions to provide consumers with more reliable information about food product conditions. It also generates a shielding effect for the food by incorporating active substances such as antimicrobial agents in a biogenic polymer matrix.
  • 848
  • 15 Apr 2022
Topic Review
Smart Applications of Self-Healing Polysiloxanes
Organosilicon polymers (silicones) are of enduring interest both as an established branch of polymer chemistry and as a segment of commercial products. Their unique properties were exploited in a wide range of everyday applications. The research attention polysiloxanes attracted as the materials of choice for various emerging technologies was tremendous. A rapid improvement in bulk modification strategies can be observed as well as the design of a new generation of PDMS-based smart materials, including flexible wearable electronics, sensors, coatings or e-skin. 
  • 123
  • 21 Feb 2024
Topic Review
Small-Molecule Thermoresponsive Ionic Liquid Materials
Ionic liquids (ILs) are a class of low-melting molten salts (<100 °C) constituted entirely of ions, and their research has gained tremendous attention in line with their remarkably growing applications.
  • 145
  • 07 Dec 2023
Topic Review
Small Schiff Base Molecules
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored.
  • 151
  • 01 Mar 2024
  • Page
  • of
  • 467
Video Production Service