Topic Review
Synthesis and Properties of Deep Eutectic Solvents
The use of deep eutectic solvents (DES) is on the rise worldwide because of the astounding properties they offer, such as simplicity of synthesis and utilization, low-cost, and environmental friendliness, which can, without a doubt, replace conventional solvents used in heaps.
  • 716
  • 04 Jul 2023
Topic Review
Synthesis and Modification of Magnetic Nanoparticles
Magnetic nanoparticles (MNPs) combine their magnetic properties with other interesting characteristics, such as their small size, high surface-to-volume ratio, easy handling, and excellent biocompatibility, resulting in improved specificity and sensitivity and reduced matrix effects. They can be tailored to specific applications and have been extensively used in various fields, including biosensing and clinical diagnosis. In addition, MNPs simplify sample preparation by isolating the target analytes via magnetic separation, thus reducing the analysis time and interference phenomena and improving the analytical performance of detection. The synthesis and modification of MNPs play a crucial role in adjusting their properties for different applications.
  • 126
  • 19 Oct 2023
Topic Review
Synthesis and Electron Doping of TiNCl
Layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) have two polymorphs, including α- and β-forms, which have the FeOCl and SmSI structures, respectively. These compounds are band insulators and become metals and show superconductivity after electron doping by intercalating alkali metals between the layers. The superconductivity of β-form had been extensively characterized from decades ago, but it is not easy to consistently interpret all experimental results using conventional phonon-mediated Bardeen–Cooper–Schriefer mechanisms. The titanium compound TiNCl crystallizes only in the α-form structure. TiNCl also exhibits superconductivity as high as ~16 K after electron doping by intercalating metals and/or organic basis. It is important to compare the superconductivity of different M–N networks. However, α-form compounds are vulnerable to moisture, unlike β-form ones. The intercalation compounds are even more sensitive to humid air.
  • 518
  • 07 Jun 2022
Topic Review
Synthesis and Characterization of Proteinoid and Nanocapsules
Proteinoids are random polymers composed of amino acids synthesized by stepwise thermal polymerization. They were discovered and studied in the 1950s by Fox and coworkers, who suggested that they formed spontaneously by high heat at the beginning of life on Earth. Nanocapsules (NCs) form spontaneously by heating proteinoids to about 70 °C in an aqueous solution to completely dissolve the polymers, followed by slow cooling to room temperature.
  • 451
  • 27 Apr 2023
Topic Review
Synthesis and Characteristics of PEDOT:PSS and PEDOT:Carrageenan
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been mostly used as a counter electrode to give a high performance of dye-sensitized solar cell (DSSC). PEDOT doped by carrageenan, namely PEDOT:Carrageenan, was introduced as a new material to be applied on DSSC as an electrolyte. PEDOT:Carrageenan has a similar synthesis process as PEDOT:PSS, owing to their similar ester sulphate (-SO3H) groups in both PSS and carrageenan. 
  • 1.2K
  • 17 Jul 2023
Topic Review
Synthesis and Application of Three-Dimensional Graphene-Based Aerogels
Aerogel is generated by the replacement of liquid inside a gel with gas by freeze-drying or supercritical drying technique. Three-dimensional graphene-based aerogels (3D GAs), combining the intrinsic properties of graphene and 3D porous structure,  can be prepared via self-assembly method, template-guided method and sol-gel process. They have attracted increasing research interest in varied fields with potential applications in photoredox catalysis, biomedicine, energy storage, supercapacitor or other single aspect.
  • 553
  • 22 Feb 2022
Topic Review
Synergistic Effect of Nanoparticles
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation.
  • 95
  • 14 Jun 2024
Topic Review
Symbol
In chemistry, a symbol is an abbreviation for a chemical element. Symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised. Earlier symbols for chemical elements stem from classical Latin and Greek vocabulary. For some elements, this is because the material was known in ancient times, while for others, the name is a more recent invention. For example, Pb is the symbol for lead (plumbum in Latin); Hg is the symbol for mercury (hydrargyrum in Greek); and He is the symbol for helium (a new Latin name) because helium was not known in ancient Roman times. Some symbols come from other sources, like W for tungsten (Wolfram in German) which was not known in Roman times. A 3-letter temporary symbol may be assigned to a newly synthesized (or not-yet synthesized) element. For example, "Uno" was the temporary symbol for hassium (element 108) which had the temporary name of unniloctium, based on its atomic number being 8 greater than 100. There are also some historical symbols that are no longer officially used. In addition to the letters for the element itself, additional details may be added to the symbol as superscripts or subscripts a particular isotope, ionization, or oxidation state, or other atomic detail. A few isotopes have their own specific symbols rather than just an isotopic detail added to their element symbol. Attached subscripts or superscripts specifying a nuclide or molecule have the following meanings and positions: In Chinese, each chemical element has a dedicated character, usually created for the purpose (see Chemical elements in East Asian languages). However, Latin symbols are also used, especially in formulas. Many functional groups also have their own chemical symbol, e.g. Ph for the phenyl group, and Me for the methyl group. A list of current, dated, as well as proposed and historical signs and symbols is included here with its signification. Also given is each element's atomic number, atomic weight, or the atomic mass of the most stable isotope, group and period numbers on the periodic table, and etymology of the symbol. Hazard pictographs are another type of symbols used in chemistry.
  • 873
  • 14 Nov 2022
Topic Review
Switchable Solvents
Switchable solvents are a special class of solvents that have the ability to switch between different forms and properties, depending on external stimuli. The most common type of switchable solvents are called "ionic liquids" which are liquids made up of ions that are in a liquid state at room temperature. These solvents have unique properties that make them attractive for a wide range of applications, such as green chemistry, separation and purification processes, and energy storage. Switchable solvents are a class of solvents that can undergo reversible changes in their physical and chemical properties in response to external stimuli, such as temperature, pressure, or pH. They have gained significant attention in recent years due to their potential as more sustainable and efficient alternatives to traditional solvents in a range of applications, including industrial processes and chemical synthesis. Switchable solvents can be classified into two main categories: reversible ionic liquids (RILs) and switchable polarity solvents (SPSs). RILs are a type of switchable solvent that can change from a liquid to a solid or a gas, depending on the applied stimulus. This reversible phase transition is due to the formation or disruption of ionic interactions between the solvent molecules. RILs have been used in a range of applications, including the separation of chemicals, catalysis, and energy storage. SPSs, on the other hand, are solvents that can switch between polar and non-polar states in response to a stimulus, such as a change in pH or temperature. This switch in polarity can be used to selectively extract or dissolve different types of molecules, making them useful in a range of industrial processes, including extraction, separation, and purification. One of the main advantages of switchable solvents is their potential to reduce the environmental impact of chemical processes by replacing traditional solvents that are toxic or have a high carbon footprint. They can also improve process efficiency by reducing the need for multiple solvents and simplifying the solvent recovery process
  • 997
  • 24 Mar 2023
Topic Review
Sweet Boron
Boron neutron capture therapy (BNCT) is a binary type of radiotherapy for the treatment of cancer. Due to recent developments of neutron accelerators and their installation in some hospitals, BNCT is on the rise worldwide and is expected to have a significant impact on patient treatments. Therefore, there is an increasing need for improved boron delivery agents. 
  • 556
  • 03 Mar 2022
  • Page
  • of
  • 467
Video Production Service