Topic Review
3D Printing to Produce BioComposite
Current environmental concerns have led to a search of more environmentally friendly manufacturing methods, thus, natural fibers have gained attention in the 3D printing industry to be used as biofilters along with thermoplastics. The utilization of natural fibers is very convenient as they are easily available, cost-effective, eco-friendly, and biodegradable. Using natural fibers rather than synthetic fibers in the production of the 3D printing filaments will reduces gas emissions associated with the production of the synthetic fibers that would add to the current pollution problem. As a matter of fact, natural fibers have a reinforcing effect on plastics. This review analyzes how the properties of the different types of polymers vary when natural fibers processed to produce filaments for 3D Printing are added. The results of using natural fibers for 3D Printing are presented in this study and appeared to be satisfactory, while a limited number of studies have reported some issues.
  • 1.0K
  • 12 May 2021
Topic Review
3D Structured Capacitive Sensors
Rapid technological advancements have led to increased demands for sensors. Hence, high performance suitable for next-generation technology is required. As sensing technology has numerous applications, various materials and patterning methods are used for sensor fabrication. This affects the characteristics and performance of sensors, and research centered specifically on these patterns is necessary for high integration and high performance of these devices. 
  • 204
  • 09 Nov 2023
Topic Review
3D-(Bio)printed Hydrogels as Wound Dressings
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter take several months to heal or do not heal (non-healing chronic wounds), are usually prone to microbial infection and represent an important source of morbidity since they affect millions of people worldwide. Typical wound treatments comprise surgical (e.g., debridement, skin grafts/flaps) and non-surgical (e.g., topical formulations, wound dressings) methods. Modern experimental approaches include among others three dimensional (3D)-(bio)printed wound dressings.
  • 195
  • 29 Feb 2024
Topic Review
3D-Printed Satellite Brackets
Brackets are the load-bearing components in a satellite. The current age of satellites comprises specific brackets that set out as a link between the bodies of the satellite, reflector parts, and feeder facilities mounted at its upper end. Brackets are used to carry loads of the satellite body frame, supporting elements, batteries, and electronic goods. Additive Manufacturing (AM) is a process in which a 3D solid object is built by adding the material layer-over-layer. The success of making the product using AM technology requires greater experience in Design for Additive Manufacturing (DFAM) which makes use of the design of freedom of AM. Owing to the various advantages of AM and DFAM, it is easy to create high strength-to-weight ratio products. This is an important contribution to aerospace industries in meeting the unabated demand for lightweight and strong structural applications.
  • 1.2K
  • 09 Sep 2022
Topic Review
3DP Medicines and Medical Devices
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. This document provides an overview on different 3DP techniques to produce personalized medicines and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations.
  • 1.3K
  • 17 May 2022
Topic Review
4D Printable Smart Hydrogels for Drug Delivery
Hydrogels are three-dimensional crosslinked polymer network structures that can absorb and hold a large quantity of water while retaining a distinct shape. Among modern drug formulations, stimuli-responsive hydrogels, also known as "smart hydrogels," has attracted enormous attention. The fundamental characteristic of these systems is the capacity to change their mechanical properties, swelling capacity, hydrophilicity, permeability of bioactive molecules, etc., in response to a wide range of stimuli, including temperature, pH, light irradiation, magnetic field, biological factors, etc. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel drug delivery systems, which release active ingredients in response to internal or external stimuli.
  • 849
  • 01 Nov 2022
Topic Review
4D Printing Technologies
3D printing has played a crucial role in the last decades as an innovative technology for tissue and organ fabrication, patient-specific orthoses, drug delivery, and surgical planning. However, biomedical materials used for 3D printing are usually static and unable to dynamically respond or transform within the internal environment of the body. These materials are fabricated ex situ, which involves first printing on a planar substrate and then deploying it to the target surface, thus resulting in a possible mismatch between the printed part and the target surfaces. The emergence of 4D printing addresses some of these drawbacks, opening an attractive path for the biomedical sector. By preprogramming smart materials, 4D printing is able to manufacture structures that dynamically respond to external stimuli. Despite these potentials, 4D printed dynamic materials are still in their infancy of development. The rise of artificial intelligence (AI) could push these technologies forward enlarging their applicability, boosting the design space of smart materials by selecting promising ones with desired architectures, properties, and functions, reducing the time to manufacturing, and allowing the in situ printing directly on target surfaces achieving high-fidelity of human body micro-structures. 
  • 1.1K
  • 29 Jul 2022
Topic Review
5-Arylidenerhodanines as P-gp Modulators
Multidrug resistance (MDR) is considered one of the major mechanisms responsible for the failure of numerous anticancer and antiviral chemotherapies. Various strategies to overcome the MDR phenomenon have been developed, and one of the most attractive research directions is focused on the inhibition of MDR transporters, membrane proteins that extrude cytotoxic drugs from living cells. 
  • 327
  • 14 Apr 2023
Topic Review
5-Hydroxymethylfurfural (HMF)
HMF, an indispensable member of the furan-based platform compound, known as the “sleeping giant”, is a bridge between renewable biomass and industrial bulk chemicals. In recent years, the catalytic transformation of biomass to HMF has been widely studied and envisaged to be hopeful in achieving sustainable biorefineries. The synthesis of HMF from biomass requires the acid hydrolysis of biomass to hexose, and then dehydration of hexose, to obtain HMF. In the second step of dehydration, starting from ketohexose (fructose) is more efficient than starting from aldohexose (glucose).
  • 1.3K
  • 11 Oct 2021
Topic Review
6-formyl-indolo(3,2-b)carbazole
6-formyl-indolo[3,2-b]carbazole (FICZ) (chemical formula C19H12N2O) is a nitrogen heterocycle, having an extremely high affinity (Kd = 7 x 10-11M) for binding to the Aryl hydrocarbon receptor (AhR). It was originally identified as a photooxidized derivative of the amino acid tryptophan and suggested to be the endogenous liagand of the AhR.
  • 500
  • 04 Nov 2022
  • Page
  • of
  • 467
Video Production Service