Topic Review
The Chemical Fingerprint of Fortified Wines
The chemical fingerprint of fortified wines is very complex and fascinating, being constituted by several hundred volatile and non-volatile chemical groups, such as terpenoids, pyrazines, esters, alcohols, acids, furanic compounds, phenolic compounds, and organic acids, among others. These chemical groups were present in fortified wines at different volatilities, polarities, and concentration ranges, from a few ng/L to mg/L. However, the quality of wine also depends on several parameters, such as grape variety, vineyard location, terroir, and vinification conditions (e.g., fermentation, ageing), among others. 
  • 676
  • 12 Jul 2023
Topic Review
The Challenging Treatment of Cisplatin-Resistant Tumors
Cancer is one of the most lethal diseases, causing millions of deaths worldwide. In particular, carcinogenesis, the process responsible for healthy cells’ transformation into tumoral cells, is characterized by multi-stage evolution: initiation, promotion, and the malignant transformation of cells and progression. During this process, some DNA mutations occur, providing the cancer with different distinctive features, such as uncontrolled cell proliferation, replicative cell immortality, the circumvention of growth suppressors, the induction of angiogenesis, resistance to cell death, activation to invasion, and metastasis. The principal cancer treatments rely on surgical resection, radiotherapy, chemotherapy, immunotherapy, and targeted therapy, but usually combined therapy is the preferred choice. Indeed, after surgery, the patient often undergoes radio- or chemotherapy. 
  • 332
  • 21 Apr 2023
Topic Review
The Catalytic Interface Layer for Bipolar Membrane
Bipolar membranes, a new type of composite ion exchange membrane, contain an anion exchange layer, a cation exchange layer and an interface layer. The interface layer or junction is the connection between the anion and cation exchange layers. Water is dissociated into protons and hydroxide ions at the junction, which provides solutions to many challenges in the chemical, environmental and energy fields. By combining bipolar membranes with electrodialysis technology, acids and bases could be produced with low cost and high efficiency. The interface layer or junction of bipolar membranes (BPMs) is the connection between the anion and cation exchange layers, which the membrane and interface layer modification are vital for improving the performance of BPMs.
  • 597
  • 02 Sep 2022
Topic Review
The beautiful world of biosensors
The biosensors have important role in science of chemical analysis in the field of electrochemical methods. Their application in rapid detection of toxins in types, we consume in our daily lives, is particularly useful for public health. The main characteristics of evaluation of biosensors is the high sensitivity, high selectivity, the quick response and the reusability. Analysis of the real samples need additionally a method of evaluating the rate of recovery that is the fractional difference of signal between real and simulated samples. The advantages of the use of biosensors are part of the easy construction, portability and low cost. The provision of analytical results of biosensors is similar to that of other far more expensive methods of instrumental chemical analysis.
  • 2.3K
  • 29 Dec 2021
Topic Review
The Asymmetric Hydroarylation of Activated Aryl Portions
Hydroarylation reactions enable the formation of new Csp2–Csp3 or Csp2–Csp2 bonds using aromatic substrates. Its outcome is described as the addition of hydrogen and an aryl group to an unsaturated moiety, resulting in the functionalization of the aromatic Csp2–H bond. Hydroarylation reactions can occur by a direct functionalization via insertion of an unsaturated compound or with the use of pre-activated aryl substrates, usually aryl-iodides or aryl-boronated. Below are reported some example from the scientific production of the last 10 years about the asymmetric hydroarylation of activated aryl portions. Nickel and palladium turned out to be the more-employed metals. 
  • 385
  • 07 Dec 2022
Topic Review
The Assembly of PPTA Nanofibers and the Applications
Poly (p-phenylene terephthalamide) (PPTA) is one kind of lyotropic liquid crystal polymer. Kevlar fibers made from PPTA is widely used in many fields due to the superior mechanical properties resulted from highly oriented macromolecular structure. However, the “infusible and insoluble” characteristic of PPTA gives rise to its poor processability, which limits its scope of application. The strong interactions and orientation characteristic of aromatic amide segments make PPTA attractive in the field of self-assembly. The chemical derivations have proved an effective way to modify the molecular structure of PPTA to improve its solubility and amphiphilicity, which resulted in different liquid crystal behaviors or supramolecular aggregates, but the modification of PPTA is usually complex and difficult. Alternatively, higher order all-PPTA structures have also been realized through the controllable hierarchical self-assembly of PPTA from the polymerization process to the formation of macroscopic products. It briefly introduces the self-assembly methods of PPTA based materials in recent years, and focuses on the polymerization-induced PPTA nanofibers which can be further fabricated into different macroscopic architectures when other self-assembly methods are combined. This monomer-started hierarchical self-assembly strategy evokes the feasible processing of PPTA, and enriches the diversity of product, which is expected to be expanded to other liquid crystal polymers.
  • 685
  • 20 Jul 2022
Topic Review
The Applications of Cationic Polymers
Nucleic acid therapy can achieve lasting and even curative effects through gene augmentation, gene suppression, and genome editing. However, it is difficult for naked nucleic acid molecules to enter cells. As a result, the key to nucleic acid therapy is the introduction of nucleic acid molecules into cells. Cationic polymers are non-viral nucleic acid delivery systems with positively charged groups on their molecules that concentrate nucleic acid molecules to form nanoparticles, which help nucleic acids cross barriers to express proteins in cells or inhibit target gene expression. Cationic polymers are easy to synthesize, modify, and structurally control, making them a promising class of nucleic acid delivery systems.
  • 462
  • 05 Jun 2023
Topic Review
The Application of Food-Grade Emulsions
Briefly, an emulsion is simply a mixture of two (or more) liquids that are otherwise immiscible. The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance people's understanding of these dispersion systems and to expand their application scope. 
  • 1.7K
  • 30 Sep 2022
Topic Review
The Application of Dissolving Microneedles in Biomedicine
Microneedle technology has been widely used for the transdermal delivery of substances, showing improvements in drug delivery effects with the advantages of minimally invasive, painless, and convenient operation. With the development of nano- and electrochemical technology, different types of microneedles are increasingly being used in other biomedical fields. Dissolving microneedles have achieved remarkable results in the fields of dermatological treatment, disease diagnosis and monitoring, and vaccine delivery, and they have a wide range of application prospects in various biomedical fields, showing their great potential as a form of clinical treatment. 
  • 302
  • 25 Oct 2023
Topic Review
The Antioxidant Effect of Metal and Metal-Oxide Nanoparticles
Inorganic nanoparticles, such as CeO3, TiO2 and Fe3O4 could be served as a platform for their excellent performance in antioxidant effect. They may offer the feasibility to be further developed for their smaller and controllable sizes, flexibility to be modified, relative low toxicity as well as ease of preparation.
  • 662
  • 25 May 2022
  • Page
  • of
  • 467
Video Production Service