Topic Review
Thermocatalytic Conversion of Plastics into Liquid Fuels
The problem of recycling polymer waste remains the main one in the context of the growth in the use of plastics. Given the non-renewability of fossil fuels, the task of processing plastic waste into liquid fuels seems to be a promising one. Thermocatalytic conversion is one of the methods that allows obtaining liquid products of the required hydrocarbon range. Clays and clay minerals can be distinguished among possible environmental-friendly, cheap and common catalysts.
  • 448
  • 08 Jun 2022
Topic Review
Thermo-Electrochemical Cells for Harvesting Waste Heat
Thermo-electrochemical cells (also known as thermocells; TECs) represent a promising technology for harvesting and exploiting low grade waste heat (< 100-150ºC) ubiquitous in the modern environment. Based on temperature dependent redox reactions and ion diffusion, emerging liquid-state thermocells convert waste heat energy into electrical energy generating power at low costs, minimal material consumption and negligible carbon foot-print. Highest values of output power and cell potentials have been achieved for the redox ferri/ferrocyanide system and Co2+/3+, with great opportunities for further development in both aqueous and non-aqueous solvents. New thermoelectric applications in the field include wearable and portable electronic devices in the health and performance monitoring sectors; using body heat as a continuous energy source, thermoelectrics are being employed for long-term, continuous powering of these devices. Energy storage in the form of micro supercapacitors and in lithium ion batteries is another emerging application. For waste heat conversion (WHC) to partially replace fossil fuels as an alternative energy source, power generation needs to be commercially viable and cost-effective. Achieving greater power density and operations at higher temperatures will require extensive research and significant developments in the field.
  • 475
  • 05 Sep 2022
Topic Review
Thermo-chemotherapy; Magnetic Hyperthermia and 5-fluorouracil
Limitations of current cancer therapies require more effective therapeutic strategies. Single-modality therapies such as chemotherapy or radiotherapy are not efficient enough to overcome complicated forms of cancer. Conversely, multimodal approaches like combinatorial hyperthermia and chemotherapy have shown promising therapeutic results. Multifunctional magnetic nanoparticles (MNPs) enable the application of local magnetic hyperthermia and the delivery of chemotherapeutics into tumors. This study demonstrates the potential of using MNPs for the application of a combination of magnetic hyperthermia and 5-fluorouracil-based chemotherapy to treat colorectal cancer in tumor-bearing mouse models.
  • 581
  • 26 Oct 2020
Topic Review
Thermally Modified Wood Exposed to Different Weathering Conditions
Thermally modified wood (TMW) is a material derived from a treatment that combines temperature and moisture, avoiding harmful substances while providing better energy efficiency and drying quality. Such types of processes can considerably improve the performance of timber in several aspects. The treatment is usually achieved at temperatures between 120 °C and 260 °C, depending on the industrial process and desired end-product characteristics.
  • 591
  • 19 Oct 2021
Topic Review
Thermally Conductive 3D Aerogels Based on Carbon Nanofillers
Aerogels are perfect 3D interconnected designs with unique properties provided by tenuous networks of nanosheets or filaments; they are typically fabricated via sol–gel, freeze drying, and other phase-separating and drying techniques and possess remarkable properties, such as an extraordinarily high specific surface area, great flexibility, low density, variable tunable porosity, low dielectric constant, and low TC. Due to the abovementioned advantageous physical features, they present a large amount of promise for applications as adaptable absorbent materials and for their uses in EM shielding, thermal insulation, and wearable pressure-sensing materials, to be employed as a multifunctional aerogel material. 
  • 516
  • 28 Nov 2022
Topic Review
Thermal Stability of Structural Materials
Thermal stability determines the material ability of retaining its properties at required temperatures over extended service time. In addition to temperature and time, thermal stability is affected by load conditions and environmental conditions.
  • 7.6K
  • 20 Aug 2020
Topic Review
Thermal Stability of Layered LTMO2
Layered lithium transition metal (TM) oxides LiTMO2 (TM = Ni, Co, Mn, Al, etc.) are the most promising cathode materials for lithium-ion batteries because of their high energy density, good rate capability and moderate cost. However, the safety issue arising from the intrinsic thermal instability of nickel-based cathode materials is still a critical challenge for further applications in electric vehicles and energy storage power stations.
  • 532
  • 15 Mar 2023
Topic Review
Thermal Conductivity Techniques
Conventional thermal fluids have found limited application owing to low thermal conductivity (TC). The need for more efficient fluids has become apparent leading to the development of nanofluids as advanced thermal fluids. Nanofluid synthesis by suspending nano-size materials into conventional thermal fluids to improve thermal properties has been extensively studied. TC is a pivotal property to the utilization of nanofluids in various applications as it is strongly related to improved efficiency and thermal performance. Numerous studies have been conducted on the TC of nanofluids using diverse nanoparticles and base fluids. 
  • 439
  • 10 Feb 2023
Topic Review
Thermal Characterization of Low-Dimensional Materials
Heat dissipation and thermal management are central challenges in various areas of science and technology and are critical issues for the majority of nanoelectronic devices. In this review, we focus on experimental advances in thermal characterization and phonon engineering that have drastically increased the understanding of heat transport and demonstrated efficient ways to control heat propagation in nanomaterials.
  • 853
  • 02 Feb 2021
Topic Review
Thermal Barrier Coatings
Thermal barrier coating (TBC) systems have presented an ongoing design issue in bids to improve the lifespan of coatings. A TBC can support an extended lifespan by repairing cracks between interfacial layers during high thermal exposure while at the same time increasing coating thickness. Two deposition techniques, atmospheric plasma spray and water-stabilized plasma spray (WSP), have been distinguished to understand mechanical and thermal performance based on their contrasting torch systems and microstructural characterization.
  • 792
  • 23 Dec 2022
  • Page
  • of
  • 467
Video Production Service