Topic Review
Fullerenes
Buckyball clusters or buckyballs, also known as endohedral fullerenes, include fullerenes, buckminsterfullerene, and C60, which are composed of fewer than 300 carbon atoms.
  • 720
  • 13 Apr 2021
Topic Review
Full-Color Realization of Micro-LED Displays
Emerging technologies, such as smart wearable devices, augmented reality (AR)/virtual reality (VR) displays, and naked-eye 3D projection, have gradually entered our lives, accompanied by an urgent market demand for high-end display technologies. Ultra-high-resolution displays, flexible displays, and transparent displays are all important types of future display technology, and traditional display technology cannot meet the relevant requirements. Micro-light-emitting diodes (micro-LEDs), which have the advantages of a high contrast, a short response time, a wide color gamut, low power consumption, and a long life, are expected to replace traditional liquid-crystal displays (LCD) and organic light-emitting diodes (OLED) screens and become the leaders in the next generation of display technology. However, there are two major obstacles to moving micro-LEDs from the laboratory to the commercial market. One is improving the yield rate and reducing the cost of the mass transfer of micro-LEDs, and the other is realizing a full-color display using micro-LED chips. This study will outline the three main methods for applying current micro-LED full-color displays, red, green, and blue (RGB) three-color micro-LED transfer technology, color conversion technology, and single-chip multi-color growth technology, to summarize present-day micro-LED full-color display technologies and help guide the follow-up research.
  • 3.8K
  • 22 Dec 2020
Topic Review
Full Cell Battery Metrics for LiNixMnyCozO2 Compositions
Among the current battery technologies, lithium-ion batteries (LIBs) are essential in shaping future energy landscapes in stationary storage and e-mobility. Among all components, choosing active cathode material (CAM) limits a cell’s available energy density (Wh kg−1), and the CAM selection becomes critical. Layered Lithium transition metal oxides, primarily, LiNixMnyCozO2 (NMC) (x + y + z = 1), represent a prominent class of cathode materials for LIBs due to their high energy density and capacity. The battery performance metrics of NMC cathodes vary according to the different ratios of transition metals in the CAM. NMC are very popular as transition metal oxide cathodes. The percentage of elements present in the composition can vary in physical and chemical properties. The entry gives you an on-shelf data for the full cell battery metrics of NMC cathodes with reported anodes, electrolytes and electrolyte additives.
  • 282
  • 06 Apr 2023
Topic Review
Fugitive Dust
Fugitive dust is a serious threat to unpaved road users from a safety and health point of view. Dust suppressing materials or dust suppressants are often employed to lower the fugitive dust. Currently, many dust suppressants are commercially available and are being developed for various applications. 
  • 620
  • 09 Mar 2021
Topic Review
Fucoxanthin Extracted from Brown Algae
The scientific community has corroborated the numerous beneficial activities of fucoxanthin, such as its antioxidant, anti-inflammatory, anticancer or neuroprotective effects, among others. These properties have attracted the attention of nutraceutical, cosmetic and pharmacological industries, giving rise to various possible applications. Fucoxanthin may be chemically produced, but the extraction from natural sources is considered more cost-effective, efficient and eco-friendly. Thus, identifying suitable sources of this compound and giving a general overview of efficient extraction, quantification, purification and stabilization studies is of great importance for the future production and commercialization of fucoxanthin. The entry describes the potential applications of fucoxanthin pigment. Its production must face several challenges since its chemical synthesis represents a complex process which is not efficient and the extraction method from marine organisms has been not standardized. The main characteristic of a profitable product is to be obtained by using simple, fast, and based on low-cost technologies. This work provides an overview of different extraction conditions that may help in the standardization of the process, especially important at an industrial level. Therefore, the main aim of this work has been to underline the best algae species in terms of fucoxanthin production and the most promising extraction and purification methods, while offering a complete panorama of the described bioactivities of fucoxanthin which includes bioavailability, administration via, doses and stability of the molecule under different conditions.
  • 3.0K
  • 06 Feb 2021
Topic Review
Fucoidan in Pharmaceutical Formulations
Fucoidan is a heterogeneous group of polysaccharides isolated from marine organisms, including brown algae and marine invertebrates. The physicochemical characteristics and potential bioactivities of fucoidan have attracted substantial interest in pharmaceutical industries. These polysaccharides are characterized by possessing sulfate ester groups that impart negatively charged surfaces, low/high molecular weight, and water solubility. In addition, various promising bioactivities have been reported, such as antitumor, immunomodulatory, and antiviral effects. Hence, the formulation of fucoidan has been investigated in diverse pharmaceutical dosage forms to be able to reach their site of action effectively. Moreover, they can act as carriers for various drugs in value-added drug delivery systems.
  • 709
  • 20 Apr 2023
Topic Review
FTIR Spectroscopy as Diagnostic Tools
Infrared spectroscopy has long been used to characterize chemical compounds, but the applicability of this technique to the analysis of biological materials containing highly complex chemical components is arguable. However, recent advances in the development of infrared spectroscopy have significantly enhanced the capacity of this technique in analyzing various types of biological specimens. Consequently, there is an increased number of studies investigating the application of infrared spectroscopy in screening and diagnosis of various diseases. The lack of highly sensitive and specific methods for early detection of cancer has warranted the search for novel approaches. Being more simple, rapid, accurate, inexpensive, non-destructive and suitable for automation compared to existing screening, diagnosis, management and monitoring methods, Fourier transform infrared spectroscopy can potentially improve clinical decision-making and patient outcomes by detecting biochemical changes in cancer patients at the molecular level. Besides the commonly analyzed blood and tissue samples, extracellular vesicle-based method has been gaining popularity as a non-invasive approach. Therefore, infrared spectroscopic analysis of extracellular vesicles could be a useful technique in the future for biomedical applications.
  • 1.6K
  • 23 Jun 2021
Topic Review
From Triboelectric Nanogenerator to Uninterrupted Power Supply System
Triboelectric nanogenerator (TENG) was invented in 2012 and is undergoing fast progress in tandem with the notion of switching to cleaner forms of energy, such as thermal, mechanical, biochemical, and solar, as well as any other forms of environmental energy. Based on the coupled effects of contact electrification and electrostatic induction, TENG represents a significant technological advance in converting various mechanical energies present in the ambient environment into electrical energy. Because of its benefits for environmental friendliness, low cost, sound efficiency, and a wide range of material alternatives, it has been extensively employed in several varieties of self-powered electronic gadgets, such as wireless sensors, implanted medical equipment, chemical sensors, electrochemical processes, household appliances, security detection systems, human-machine interfaces (HMIs), and artificial intelligence (AI).
  • 325
  • 25 Nov 2022
Topic Review
From CO2 to Value-Added Products
The global warming and the dangerous climate change arising from the massive emission of CO2 from the burning of fossil fuels have motivated the search for alternative clean and sustainable energy sources. However, the industrial development and population necessities make the decoupling of economic growth from fossil fuels unimaginable and, consequently, the capture and conversion of CO2 to fuels seems to be, nowadays, one of the most promising and attractive solutions in a world with high energy demand. In this respect, the electrochemical CO2 conversion using renewable electricity provides a promising solution. However, faradaic efficiency of common electro-catalysts is low, and therefore, the design of highly selective, energy-efficient, and cost-effective electrocatalysts is critical. Carbon-based materials present some advantages such as relatively low cost and renewability, excellent electrical conductivity, and tunable textural and chemical surface, which show them as competitive materials for the electro-reduction of CO2.
  • 1.3K
  • 23 Mar 2021
Topic Review
Friction Stir Welding of Polymers
Friction Stir Welding (FSW) is one of the welding methods within the category of friction welding, as it uses the friction between the base material and the tool to generate the heat necessary to soften the material of the joint. The FSW process was developed, demonstrated and patented by “The Welding Institute (TWI)” in England for the first time by Thomas et al.. The principle of the conventional process is illustrated in, as well as its main variables.
  • 816
  • 30 Jun 2021
  • Page
  • of
  • 467
ScholarVision Creations