Topic Review
Defects and Heteroatoms and Supported Graphene Layers
The possibility of using graphene-based materials as “metal-free” catalysts is attracting enormous interest, since it reduces the need for precious or rare elements currently used in heterogeneous catalysis. However, free standing  and perfect graphene is known to be “perfectly inert”, while it is now well established that there is an essential role of defects and dopants in activating its chemical properties.
  • 916
  • 02 Apr 2022
Topic Review
Chitosan and Chitosan Modified by Functionalization
The biomedical and therapeutic importance of chitosan and chitosan derivatives is the subject of interdisciplinary research. In this entry, researchers intended to consolidate some of the recent discoveries regarding the potential of chitosan and its derivatives to be used for biomedical and other purposes. Why chitosan? Because chitosan is a natural biopolymer that can be obtained from one of the most abundant polysaccharides in nature, which is chitin. Compared to other biopolymers, chitosan presents some advantages, such as accessibility, biocompatibility, biodegradability, and no toxicity, expressing significant antibacterial potential. In addition, through chemical processes, a high number of chitosan derivatives can be obtained with many possibilities for use. 
  • 1.5K
  • 02 Apr 2022
Topic Review
Nanocrystals in Brain Delivery
Nanocrystalline drug technology involves the reduction in the bulk particle size down to the nanosize range, thus modifying its physico-chemical properties with beneficial effects on drug bioavailability. Nanocrystals (NCs) are carrier-free drug particles surrounded by a stabilizer and suspended in an aqueous medium. The aim of brain drug targeting is the delivery of therapeutics crossing or bypassing the barriers that protect the brain from the entry of foreign substances. The blood–brain barrier (BBB) provides both anatomical and physiological protection for the CNS. Drug delivery by nanotechnological formulations could promote brain targeting by different transport mechanisms, including the paracellular pathway, the transcellular pathway, the carrier-mediated pathway, receptor-mediated transcytosis and adsorptive transcytosis. 
  • 356
  • 02 Apr 2022
Topic Review
Polyurea Aerogels
The term “aerogel” describes a certain class of low-density solid materials with a high open porosity. Aerogels can be considered to be a subclass of the much broader domain of porous materials; however, they are distinguished from, for example, blown foams, because they are prepared in a completely different manner—namely, by drying wet gels in a way that preserves nearly all of their volume in the final dry form.
  • 692
  • 02 Apr 2022
Topic Review
Drug Delievery of Nanocrystals
The development of new drugs is often hindered by low solubility in water, a problem common to nearly 90% of natural and/or synthetic molecules in the discovery pipeline. Nanocrystalline drug technology involves the reduction in the bulk particle size down to the nanosize range, thus modifying its physico-chemical properties with beneficial effects on drug bioavailability. Nanocrystals (NCs) are carrier-free drug particles surrounded by a stabilizer and suspended in an aqueous medium. Due to high drug loading, NCs maintain a potent therapeutic concentration to produce desirable pharmacological action, particularly useful in the treatment of central nervous system (CNS) diseases. In addition to the therapeutic purpose, NC technology can be applied for diagnostic scope. The possibility of adapting NCs to different pharmaceutical forms has led to the development of these nanosystems for different routes of administration, among which the most studied is the oral route.
  • 513
  • 02 Apr 2022
Topic Review
Architectures of Polyacrylic Acid
Polyacrylic acid (PAA) is a non-toxic, biocompatible, and biodegradable polymer that gained lots of interest in recent years. PAA nano-derivatives can be obtained by chemical modification of carboxyl groups with superior chemical properties in comparison to unmodified PAA.
  • 801
  • 01 Apr 2022
Topic Review
Two-Dimensional Nanomaterials for Biomedical Applications
Two-dimensional nanomaterials (2DNMs) received remarkable attention in nanomedicine as a class of new nanomaterials in recent years. 2DNMs, which range from nanometer to micrometer scales, have one or a few atomic thicknesses and are one of the most promising materials for biomedical applications owing to their special structure and unique properties.
  • 707
  • 01 Apr 2022
Topic Review
Metamaterials
Metamaterials are amongst the advanced materials made up initially with metal structures. However, there is a huge ongoing work on dielectric metasurfaces and metamaterials with the aim of replacing metal structures with dielectric ones in order to reduce the electromagnetic losses.
  • 1.6K
  • 31 Mar 2022
Topic Review
Biomaterials as Haemostatic Agents in Cardiovascular Surgery
Intraoperative haemostasis is of paramount importance in the practice of cardiovascular surgery. Topical haemostatic methods have advanced significantly and today we deal with various haemostatic agents with different properties and different mechanisms of action. The particularity of coagulation mechanisms after extracorporeal circulation, has encouraged the introduction of new types of topic agents to achieve haemostasis, where conventional methods prove their limits. These products have an important role in cardiac, as well as in vascular, surgery, mainly in major vascular procedures, like aortic dissections and aortic aneurysms.
  • 402
  • 31 Mar 2022
Topic Review
Nanotoxicity in Human Primary and Cancer Cells
Nanomaterial toxicity tests using normal and cancer cells may yield markedly different results. Nanomaterial toxicity between cancer and primary human cells was compared to determine the basic cell line selection criteria for nanomaterial toxicity analyses.
  • 965
  • 31 Mar 2022
  • Page
  • of
  • 467
ScholarVision Creations