Topic Review
Titanium and Its Alloys
Metallic materials are widely used in the medical field, in this context, this entry focuses on the relevance of titanium and its alloys for the development of dental implants.
  • 479
  • 12 May 2022
Topic Review
Titan-based alloys
Titan-based alloys are the most-utilized materials in dental implantology, due to their physical and chemical properties. The various components of the oral environment should be considered in order to obtain a good stability of dental reconstructions. Salivary ions, proteins, enzymes, and microorganisms of the oral biofilm, may interact with and influence the implant's corrosion process. Peri-implantitis is a multifactorial process which needs to be properly addressed in order to prevent secondary implant failure. 
  • 809
  • 01 Nov 2020
Topic Review
Tissues to Implant Abutments
This entry is based on the fact that physical or biomechanical phenomena can cause biologic results. Implant-abutment connection structures determine the stability of soft tissue attachment to abutments. The bone responses to the strain that the stress is converted to, not the stress itself. Some implant-abutment materials and connection designs prevent the marginal bone loss by converting the stress to the strain stimulating bone apposition properly. These biomechanical interpretation of soft tissue seal and bone stimulation should be understood for the clinical long-term success of dental implants.
  • 2.6K
  • 27 Oct 2020
Topic Review
Tire-Derived Rubber Recycle
Rubber, as elastomer, is difficult to recycle. Today, the main end of life routes of tyres and other rubber products are landfilling, incineration in e.g. cement plants, and grinding to a fine powder, with huge quantities lacking sustainable recycling of this valuable material. Devulcanization, i.e. the breaking up of sulfur bonds by chemical, thermo-physical or biological means, is a promising route that has been investigated for more than 50 years. This review article presents and update on the state-of-the art in rubber devulcanization. This review article addresses established devulcanization technologies and novel processes described in the scientific and patent literatures. It is expected that the public discussion of environmental impacts of thermoplastics will soon spill over to thermosets and elastomers. Therefore, the industry needs to develop and market solutions proactively. Tyre recycling through devulcanization has a huge lever, since approx. 40 million tons of tyres are discarded annually.
  • 1.0K
  • 27 Oct 2020
Topic Review
Tire Rubber and Its Degradation Behavior
The use of ground tire rubber (GTR) for modifying asphalt is very promising and is a sustainable development strategy. The addition of GTR to asphalt shows many improvements in the physical, chemical and mechanical properties of the rubber asphalt binder, such as enhanced stiffness, increased skid resistance, extended service life, mitigated fatigue cracking and so on.
  • 713
  • 01 Nov 2022
Topic Review
TiO2: Next Generation Photocatalysts
TiO2 is the most widely used photocatalyst in many energy and environmental applications. This entry describes the basic structure and properties of TiO2 as a nanomaterials. It also enlists the special properties of TiO2 which make it a best candidate for photocatalysis reaction. It also explains the drawbacks of TiO2 nanomaterials along with the strategies to overcome those. 
  • 1.3K
  • 30 Mar 2021
Topic Review
TiO2-NPs: Wastewater Treatment and Ago-Environment
The tremendous increase in the production and consumption of titanium dioxide (TiO2) nanoparticles (NPs) in numerous industrial products and applications has augmented the need to understand their role in wastewater treatment technologies. The use of TiO2 NPs as the representative of photocatalytic technology for industrial wastewater treatment is coming to the horizon. As the use of industrial wastewater to feed agriculture land has been a common practice across the globe and the sewage sludge generated from wastewater treatment plants is also used as fertilizer in agricultural soils. Therefore, it is necessary to be aware of possible exposure pathways of these NPs, especially in the perspective of wastewater treatment and their impacts on the agro-environment. 
  • 934
  • 11 Aug 2020
Topic Review
TiO2-Based Nanostructures for Microbial Inactivation
Pathogenic microorganisms can spread throughout the world population, as the current COVID-19 pandemic has dramatically demonstrated. In this scenario, a protection against pathogens and other microorganisms can come from the use of photoactive materials as antimicrobial agents able to hinder, or at least limit, their spreading by means of photocatalytically assisted processes activated by light—possibly sunlight—promoting the formation of reactive oxygen species (ROS) that can kill microorganisms in different matrices such as water or different surfaces without affecting human health. Here, we focus the attention on TiO2 nanoparticle-based antimicrobial materials, intending to provide an overview of the most promising synthetic techniques, toward possible large-scale production, critically review the capability of such materials to promote pathogen (i.e., bacteria, virus, and fungi) inactivation, and, finally, take a look at selected technological applications.
  • 1.1K
  • 08 Dec 2020
Topic Review
TiO2 Nanoparticles Monitoring
In recent years, titanium dioxide (TiO2) has increasingly been used as an inorganic ultraviolet (UV) filter for sun protection. However, nano-TiO2 may also pose risks to the health of humans and the environment. Thus, to adequately assess its potential adverse effects, a comprehensive understanding of the behaviour and fate of TiO2 in different environments is crucial. Advances in analytical and modelling methods continue to improve researchers’ ability to quantify and determine the state of nano-TiO2 in various environments. However, due to the complexity of environmental and nanoparticle factors and their interplay, this remains a challenging and poorly resolved feat.
  • 496
  • 24 Mar 2021
Topic Review
TiO2 Microscale Structures
TiO2 microscale structures can be prepared from both TiO2 precursors and TiO2 nanoparticles (NPs). TiO2 microscale structures have many advantages compared to TiO2 NPs powders, such as tunable structure, higher photocatalytic activity, and ease of recovery. For TiO2 microscale structures, solid spheres and hollow spheres share some similar synthesis methods. However, microscale TiO2 microscale structures are not easily mass-produced due to the complexity of the synthesis process.
  • 1.0K
  • 26 Oct 2020
  • Page
  • of
  • 467
Video Production Service