Topic Review
Adsorption Effect Modification of Lithium–Sulfur Batteries
Lithium–sulfur batteries (LSBs) have high theoretical specific capacity (1675 mAh g−1) and high energy density (2600 Wh kg−1), and the cathode sulfur is low cost, abundant, and environmentally friendly. The “shuttle effect” refers to the phenomenon that Li2Sx (4 ≤ x ≤ 8) produced by the positive electrode diffuses to the negative electrode during the charging and discharging process, and is reduced to solid Li2S2/Li2S on the negative electrode surface and attached to the negative electrode.
  • 761
  • 30 Aug 2022
Topic Review
Honey for Antimicrobial and Wound Healing Applications
Honey was used in traditional medicine to treat wounds until the advent of modern medicine. The rising global antibiotic resistance has forced the development of novel therapies as alternatives to combat infections. Consequently, honey is experiencing a resurgence in evaluation for antimicrobial and wound healing applications. A range of both Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains and biofilms, are inhibited by honey. Furthermore, susceptibility to antibiotics can be restored when used synergistically with honey. Honey’s antimicrobial activity also includes antifungal and antiviral properties, and in most varieties of honey, its activity is attributed to the enzymatic generation of hydrogen peroxide, a reactive oxygen species. Non-peroxide factors include low water activity, acidity, phenolic content, defensin-1, and methylglyoxal (Leptospermum honeys). Honey has also been widely explored as a tissue-regenerative agent. It can contribute to all stages of wound healing, and thus has been used in direct application and in dressings. The difficulty of the sustained delivery of honey’s active ingredients to the wound site has driven the development of tissue engineering approaches (e.g., electrospinning and hydrogels). 
  • 1.3K
  • 29 Aug 2022
Topic Review
Single-Molecule Sensors Based on STM Break Junction Measurements
Single-molecule recognition and detection with the highest resolution measurement has been one of the ultimate goals in science and engineering. Break junction techniques, originally developed to measure single-molecule conductance, recently have also been proven to have the capacity for the label-free exploration of single-molecule physics and chemistry, which paves a new way for single-molecule detection with high temporal resolution. Scanning tunneling microscopy-break junction (STM-BJ), invented to measure electron transport by repeatably forming single-molecule junctions in a nanogap between two electrodes, has also been a unique platform for exploring the intrinsic properties of materials and the interaction of individual molecules at a single-molecule level. The tunneling currents in the molecular junctions are sensitive to molecular structure and configuration, interfacial coupling between the anchoring group and electrode, external stimulus and the surroundings.
  • 392
  • 29 Aug 2022
Topic Review
Graphene Nanoplatelets Screen-Printed on Woven and Knitted Fabrics
Although the force/pressure applied onto a textile substrate through a uniaxial compression is constant and independent of the yarn direction, it should be noted that such mechanical action causes a geometric change in the substrate, which can be identified by the reduction in its lateral thickness. Therefore, researchers investigate the influence of the fabric orientation on both knitted and woven pressure sensors, in order to generate knowledge for a better design process during textile piezoresistive sensor development.
  • 410
  • 29 Aug 2022
Topic Review
Bone Repair Strategies
In comparison with the bone tissue engineering (BTE) strategy, the facilitated endogenous tissue engineering (FEBTE) strategy as a novel practical approach tries to eliminate time-consuming and costly tedious process: tissue harvest, cell isolation and ex vivo co-culture with a scaffold. Based on this, the FEBTE strategy as a facile and effective strategy, is booming in bone tissue regeneration. Particularly,  chitosan (CS)-based scaffolds with versatile qualities including good biocompatibility, biodegradability, and tunable physicochemical and biological properties could recruit endogenous stem cells homing and differentiation towards lesion areas during  the process of bone repair.
  • 387
  • 29 Aug 2022
Topic Review
Structure and Functions of Aβ and Tau Proteins
The amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD.
  • 646
  • 29 Aug 2022
Topic Review
Polymeric Carriers
RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufacture more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to treatment. Even though a wide range of RNA therapeutics are being developed for various indications, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. Polymeric carriers have been widely studied for the delivery of RNA therapeutics because of their versatility, potential multi-functionality and relative low cost.
  • 521
  • 29 Aug 2022
Topic Review
Phototherapeutic Agents for Fabricating High Drug-Loading Nanomedicines
The key requirement of the chemo–photo combination therapy is the high drug-loading nanomedicines, which can load either chemotherapy drugs or phototherapy agents at the same nanomedicines and simultaneously deliver them to tumors, and play a multimode therapeutic role for tumor treatment. Many kinds of photothermal materials or photosensitizers have been used as carrier materials to construct high drug-loading nanomedicines for tumor combination therapy.
  • 669
  • 26 Aug 2022
Topic Review
Dehydrogenases involved in Reduction of CO2 to CH3OH
The three dehydrogenase enzymes involved in the CO2 to methanol conversion are: Formate dehydrogenase, Formaldehyde dehydrogenase and Alcohol dehydrogenase.
  • 663
  • 26 Aug 2022
Topic Review
Growth and Characterizations of SILAR-Deposited Thin Films
The prepared thin films could be used in lasers, cathodic ray tubes, solar cells, infrared windows, ultraviolet light emitting diodes, sensors, supercapacitors, biologic applications, and optoelectronic applications. The properties of these thin films strongly depend on the deposition techniques. Many investigations into the production of various types of thin films (by using the successive ionic layer adsorption and reaction (SILAR) method) were conducted. This method attracts interest as it possesses many advantages when compared to other deposition methods. For example, large area depositions could be carried out in any substrates at lower temperatures via inexpensive instruments; moreover, a vacuum chamber is not required, it has an excellent growth rate, and the unique film properties could be controlled.
  • 759
  • 26 Aug 2022
  • Page
  • of
  • 467
ScholarVision Creations