Topic Review
Boron Vehiculating Nanosystems in Cancer Treatment
Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving mercaptoundecahydro-closo-dodecaborate and the boronophenylalanine–fructose complex are currently ongoing, the success of this promising anticancer therapy is hampered by the lack of appropriate drug delivery systems to selectively carry therapeutic concentrations of boron atoms to cancer tissues, allowing prolonged boron retention therein and avoiding the damage of healthy tissues. To achieve these goals, numerous research groups have explored the possibility to formulate nanoparticulate systems for boron delivery. Here the researchers report the newest developments on boron vehiculating drug delivery systems based on nanoparticles, distinguished on the basis of the type of carrier used, with a specific focus on the formulation aspects.
  • 520
  • 21 Dec 2022
Topic Review
Bimetallic Nanomaterials
Bimetallic nanomaterials (BMNs) are one kind of innovative nanomaterials, referring to nano-bimetallic alloy, intermetallic compounds, or the combination of two kinds of metallic nanoparticles. Compared with monometallic nanomaterials, BMNs perform similar or even better physical and chemical properties in the medical field. BMNs possess excellent physical and chemical properties, such as easy surface modification, superior photothermal properties, multiple catalytic properties, delicate sensitivity, and good stability. Synthesis methods of bimetallic nanomaterials. The preparation methods of BMNs commonly used for cancer therapy, such as co-reduction method, hydrothermal method, seed-mediated growth method, and electrodeposition method.
  • 746
  • 21 Dec 2022
Topic Review
Hydraulic Powered Soft Actuators
Soft actuators have received extensive attention in robotics and smart device applications due to their distinctive dexterity and compliance. Among them, hydraulic soft actuators play an important role in the area because they have much higher specific power and power density than other types such as pneumatic soft actuators. Nevertheless, the deformation of flexible materials in soft actuators brings about inherent hysteresis and nonlinearity, which severely hinders them from producing the desired movement in the presence of advanced control strategies. 
  • 868
  • 21 Dec 2022
Topic Review
Applications of Micro-Sized pH Sensors
Monitoring pH changes at the micro/nano scale is essential to gain a fundamental understanding of surface processes. Detection of local pH changes at the electrode/electrolyte interface can be achieved through the use of miniaturized pH sensors. When combined with scanning electrochemical microscopy (SECM), these sensors can provide measurements with high spatial resolution. This article explores the applications of miniaturized pH sensors in biological studies, corrosion science, in energy applications, and environmental research.
  • 463
  • 20 Dec 2022
Topic Review
Non-Road Mobile Machinery Emission Studies
The term Non-Road Mobile Machinery (NRMM) covers a broad range of machinery, with or without bodywork and wheels, that are installed with a combustion engine, either a spark ignition (SI) petrol engine or a combustion ignition (CI) diesel engine, and that are not intended for carrying passengers or goods on the road. The study of NRMM emissions in the literature has largely been overshadowed by their on-road counter parts due to data on NRMM not being as freely available.
  • 683
  • 20 Dec 2022
Topic Review
Fabrication of Magnetic Polymeric Micelles
Hybrid nanoarchitectures such as magnetic polymeric micelles (MPMs) are among the most promising nanotechnology-enabled materials for biomedical applications combining the benefits of polymeric micelles and magnetic nanoparticles within a single bioinstructive system. MPMs are formed by the self-assembly of polymer amphiphiles above the critical micelle concentration, generating a colloidal structure with a hydrophobic core and a hydrophilic shell incorporating magnetic particles (MNPs) in one of the segments. MPMs have been investigated most prominently as contrast agents for magnetic resonance imaging (MRI), as heat generators in hyperthermia treatments, and as magnetic-susceptible nanocarriers for the delivery and release of therapeutic agents. The versatility of MPMs constitutes a powerful route to ultrasensitive, precise, and multifunctional diagnostic and therapeutic vehicles for the treatment of a wide range of pathologies. 
  • 415
  • 20 Dec 2022
Topic Review
Electrochemical Impedimetric Biosensors for Virus Detection
Viruses are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. 
  • 662
  • 20 Dec 2022
Topic Review
Principal Uses of Carbons from Glycerol
Biodiesel is produced by the transesterification of animal fats and vegetable oils, producing a large amount of glycerol as a by-product. The crude glycerol cannot be used in the food or pharmaceutical industries. It is crucial to transform glycerol into value-added products with applications in different areas to biodiesel be economically viable. One of the possible applications is its use as a precursor for the synthesis of carbon materials. The glycerol-based carbon materials have distinct properties due to the presence of sulfonic acid groups on the material surface, making them efficient catalysts. Additionally, the glycerol-based activated carbon materials show promising results concerning the adsorption of gases and liquid pollutants and recently as capacitors.
  • 584
  • 20 Dec 2022
Topic Review
Nanoencapsulation of Essential Oils
Essential oils (EOs) are complex mixtures of volatile and semi-volatile organic compounds that originate from different plant tissues, including flowers, buds, leaves and bark. According to their chemical composition, EOs have a characteristic aroma and present a wide spectrum of applications. However, EOs are unstable and easily degradable if not protected from external factors such as oxidation, heat and light. Therefore, there is growing interest in the encapsulation of EOs, since polymeric nanocarriers serve as a barrier between the oil and the environment. In this context, nanoencapsulation seems to be an interesting approach as it not only prevents the exposure and degradation of EOs and their bioactive constituents by creating a physical barrier, but it also facilitates their controlled release, thus resulting in greater bioavailability and efficiency.
  • 981
  • 20 Dec 2022
Topic Review
Cellulose Nanomaterials
Cellulose is the most abundant renewable source on Earth. Due to several of their characteristics, such as their renewability, sustainability, and eco-friendliness, nanocellulose-based materials are arousing growing interest from researchers in various fields of study and applications. 
  • 1.7K
  • 20 Dec 2022
  • Page
  • of
  • 467
ScholarVision Creations