Topic Review
PbS Quantum Dot Solar Cells
PbS (lead sulfide) colloidal quantum dots consist of crystallites with diameters in the nanometer range with organic molecules on their surfaces, partly with additional metal complexes as ligands. These surface molecules are responsible for solubility and prevent aggregation, but the interface between semiconductor quantum dots and ligands also influences the electronic structure. PbS quantum dots are especially interesting for optoelectronic applications and spectroscopic techniques, including photoluminescence, photodiodes and solar cells.
  • 1.1K
  • 12 Sep 2020
Topic Review
PbS and PbSe in Room-Temperature Infrared Photodetectors
Infrared photodetectors have received much attention for several decades due to their broad applications in the military, science, and daily life. However, for achieving an ideal signal-to-noise ratio and a very fast response, cooling is necessary in those devices, which makes them bulky and costly. The earliest information about lead-based semiconductor materials comes from a patent published in 1904 by Bose, who found and utilized the photovoltaic effect of a crystal of galena. Subsequently, Case carried out his research on thin films of thallous sulfide (Tl2S) in 1917 and 1920. Due to the military needs of infrared information in World War II, Germany developed lead salt (PbS, PbSe and lead telluride (PbTe)) materials vigorously in the 1930s. During that period, different methods for preparing lead salt thin films developed rapidly. Gudden and Kutzscher prepared lead salt films by evaporation and chemical deposition, respectively. Shortly after German scientists firstly studied it, the United States scientists also conducted research on it. Cashman of Northwestern University began work on Tl2S in 1941 and later turned his full attention to the preparation of thin films of PbS, PbSe and PbTe by vacuum evaporation. Among the three typical lead salts used in infrared detectors, PbS and PbSe have been developed and produced to some extent, but PbTe has not been adapted for production and has been gradually phased out.
  • 1.0K
  • 23 May 2022
Topic Review
Patterned Photoalignment
Photoalignment of liquid crystals by using azo dye molecules is a commonly proposed alternative to traditional rubbing alignment methods. Photoalignment mechanism can be well described in terms of rotational diffusion of azo dye molecules exposed by ultraviolet polarized light.
  • 557
  • 17 Mar 2021
Topic Review
Patchy Micelles via Crystallization-Driven Self-Assembly
Crystallization-driven self-assembly (CDSA) represents a highly versatile method for the production of well-defined block copolymer micelles in solution giving access to numerous tailor-made one-, two- and three-dimensional assemblies with controlled length, length distribution, shape, and corona chemistries. One special example of micelles derived by CDSA are the so-called patchy micelles, which possess a corona made of alternating nanometer-sized compartments. These patchy micelles show superior interfacial activity making them excellent candidates for the use as compatibilizers or metal (oxide) nanoparticle templates.
  • 546
  • 23 Jun 2021
Topic Review
Particulate-Reinforced Metal Matrix Composites
Particulate-reinforced metal matrix composites (PRMMCs) with excellent tribo-mechanical properties are important engineering materials and have attracted constant scientific interest over the years. Among the various fabrication methods used, co-electrodeposition (CED) is valued due to its efficiency, accuracy, and affordability. However, the way this easy-to-perform process is carried out is inconsistent, with researchers using different methods for volume fraction measurement and tribo-mechanical testing, as well as failing to carry out proper interface characterization.
  • 733
  • 30 Jun 2021
Topic Review
Particle-Bound Mercury Characterization
Particulate Bound Hg (PBM) consists of all airborne particulate containing Hg, including both stable condensed and gaseous forms adsorbed on atmospheric particulate matter (PM); it is operationally sampled and quantified by pulling air through a glass fiber or a quartz filter. PBM usually includes all those particles with a diameter <2.5 μm, even if its characterization depends on the pore size of the filter used for its collection. The accurate dimensional characterization is then essential to estimate the dry deposition of PBM, as well as any other particulate pollutant; the particles diameters directly influence gravitational sedimentation and the PBM residence time in the atmosphere. In addition, PBM chemical speciation, as well as for the other Hg forms, is fundamental to understand PBM bioavailability and therefore the effects on human .
  • 1.1K
  • 05 Jul 2021
Topic Review
Particle Coatings on Magnetorheological Materials
Magnetorheological (MR) material is a type of magneto-sensitive smart materials which consists of magnetizable particles dispersed in a carrier medium. Throughout the years, coating on the surface of the magnetic particles has been developed by researchers to enhance the performance of MR materials, which include the improvement of sedimentation stability, enhancement of the interaction between the particles and matrix mediums, and improving rheological properties as well as providing extra protection against oxidative environments. There are a few coating methods that have been employed to graft the coating layer on the surface of the magnetic particles, such as atomic transfer radical polymerization (ATRP), chemical oxidative polymerization, and dispersion polymerization.
  • 914
  • 11 Dec 2020
Topic Review
Parameters for Pressure Sensors
Pressure sensors show significant potential applications in health monitoring, bio-sensing, electronic skin, and tactile perception. Consequently, tremendous research interest has been devoted to the development of high-performance pressure sensors.
  • 490
  • 26 May 2023
Topic Review
Parameters Affecting Zeolite T Crystallization
Zeolites are well-known porous crystal systems that exist in various sizes (nano-, micro-, etc.) and have been widely incorporated in different applications. They consist of a uniform size of pore distributions which are also known as voids. Voids and cavities within the zeolite system are the factors that contribute to the unique properties of the zeolite. These voids and cavities are controlled by the type of crystals that grow and intergrowth within the zeolite membrane. Nanoporous zeolite T is identified to have within it an intergrowth framework that makes zeolite type T an exceptional species in the zeolite family.
  • 894
  • 18 Jun 2021
Topic Review
Paper-Based Humidity Sensors
Paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications.
  • 523
  • 12 Apr 2023
  • Page
  • of
  • 467
ScholarVision Creations