Topic Review
Nanoimpact in Plants
Transcriptomics studies are available to evaluate the potential toxicity of nanomaterials in plants, and many highlight their effect on stress-responsive genes. However, a comparative analysis of overall expression changes suggests a low impact on the transcriptome. Environmental challenges like pathogens, saline, or drought stress induce stronger transcriptional responses than nanoparticles. Clearly, plants did not have the chance to evolve specific gene regulation in response to novel nanomaterials; but they use common regulatory circuits with other stress responses. 
  • 546
  • 22 Apr 2021
Topic Review
Nucleic Acid Drugs Delivery Carriers
Nucleic acid drugs are not readily permeable through cell membranes and often exhibit poor blood serum stability, rapid renal clearance and poor endosomal escape/cytoplasmic escape. Therefore, they are commonly used in combination with drug delivery system (DDS) carriers. The drug carrier plays an important role in the process of drug delivery. 
  • 546
  • 04 Aug 2021
Topic Review
Fundaments of Electron Transfer in D-B-A Supramolecular Systems
If we were to sort chemical reactions by their importance for life, electron transfer (ET) would be the best candidate to be ranked first. The reasons for its importance lie in the key role it carries out in major biological processes, such as the electron transport chain and photosynthesis, as well as artificial processes, such as information storage (i.e., photography) and energy conversion (batteries). It is worth noting that ET is ubiquitous in all the branches of chemistry, from organic and biochemistry to physical and inorganic chemistry. The systematic study of the ET processes can be fundamental both for basic knowledge and for strongly applicative reasons.
  • 546
  • 01 Jun 2022
Topic Review
Biogenesis of Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines
Within the 2,5-dioxopiperazine-containing natural products generated by “head-to-tail” cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family.
  • 546
  • 18 Nov 2022
Topic Review
Biosensing with 2D Transition Metal Dichalcogenides Materials
There has been an exponential surge in reports on two-dimensional (2D) materials ever since the discovery of graphene in 2004. Transition metal dichalcogenides (TMDs) are a class of 2D materials where weak van der Waals force binds individual covalently bonded X–M–X layers (where M is the transition metal and X is the chalcogen), making layer-controlled synthesis possible. These individual building blocks (single-layer TMDs) transition from indirect to direct band gaps and have fascinating optical and electronic properties. Layer-dependent opto-electrical properties, along with the existence of finite band gaps, make single-layer TMDs superior to the well-known graphene that paves the way for their applications in many areas. Ultra-fast response, high on/off ratio, planar structure, low operational voltage, wafer scale synthesis capabilities, high surface-to-volume ratio, and compatibility with standard fabrication processes makes TMDs ideal candidates to replace conventional semiconductors, such as silicon, etc., in the new-age electrical, electronic, and opto-electronic devices. Besides, TMDs can be potentially utilized in single molecular sensing for early detection of different biomarkers, gas sensors, photodetector, and catalytic applications. The impact of COVID-19 has given rise to an upsurge in demand for biosensors with real-time detection capabilities. TMDs as active or supporting biosensing elements exhibit potential for real-time detection of single biomarkers and, hence, show promise in the development of point-of-care healthcare devices. 
  • 546
  • 23 Feb 2023
Topic Review
Hierarchical Ceramide Microcapsules
As a main component of the stratum corneum, ceramides can construct protective lamellae to provide an epidermal barrier against dehydration or external microorganisms. However, as ceramide molecules can easily form the isolated crystalline phase through self-assembly due to the amphipathic nature of bioactive lipids, the effective incorporation of ceramides into liquid media is the remaining issue for controlled release. Here, we report an unprecedented effective strategy to fabricate a completely amorphous and highly sustainable hierarchical ceramide polymer microcapsule for promising epidermal barrier by using the interpenetrating and cooperative self-construction of conical amphiphiles with a different critical packing parameter. The self-constructed amorphous architecture of ceramides in polymer microcapsule is achieved by the facile doping of conical amphiphiles and subsequent in situ polymerization of shell polymer in the core-shell geometry. It is experimentally revealed that an irregular cooperative packing structure formed by adaptive hydrophobic–hydrophilic interactions of cylindrical ceramides and conical amphiphiles in the confined microcapsule geometry enables a completely amorphous morphology of ceramides to be realized during the spontaneous encapsulation process. Furthermore, this elegant approach affords a highly dispersible and uniform hierarchical amorphous ceramide microcapsule with a greatly enhanced long-term stability compared to conventional crystalline ceramides.
  • 545
  • 10 Nov 2020
Topic Review
Protective Face Masks
The pandemic has resulted in the loss of lives and has caused economic hardships. Most of the devices used to protect against the transmission of the novel COVID-19 disease are related to textile structures. Hence, the challenge for textile professionals is to design and develop suitable textile structures with multiple functionalities for capturing viruses, passivating them, and, at the same time, having no adverse effects on humans during the complete period of use. In addition to manufacturing efficient, biocompatible, and cost-effective protective face masks, it is also necessary to inform the public about the benefits and risks of protective face mask materials.
  • 545
  • 27 Apr 2021
Topic Review
Covalent Organic for Solar Fuel
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. 
  • 545
  • 13 Jul 2021
Topic Review
Biomimetic Approaches in Clinical Endodontics
Endodontics is an important sub-branch of dentistry which deals with the different conditions of pulp to prevent tooth loss. Traditionally, common procedures, namely pulp capping, root canal treatment, apexification, and apexigonesis, have been considered for the treatment of different pulp conditions using selected materials. However, clinically to regenerate dental pulp, tissue engineering has been advocated as a feasible approach. New trends are emerging in terms of regenerative endodontics which have led to the replacement of diseased and non-vital teeth into the functional and healthy dentine-pulp complex. Root- canal therapy is the standard management option when dental pulp is damaged irreversibly. This treatment modality involves soft-tissue removal and then filling that gap through the obturation technique with a synthetic material. The formation of tubular dentine and pulp-like tissue formation occurs when stem cells are transplanted into the root canal with an appropriate scaffold material. To sum up tissue engineering approach includes three components: (1) scaffold, (2) differentiation, growth, and factors, and (3) the recruitment of stem cells within the pulp or from the periapical region.
  • 545
  • 31 Jan 2023
Topic Review
Metal Oxide-Based Photocatalysts for CO2 Reduction
The photoconversion of CO2 into solar fuels seems to curb greenhouse effect and resolve the energy crisis. One of the challenges in developing practical CO2 photoconversion catalysts is to design materials with a low cost, high activity and good stability. The excellent photocatalysts based on TiO2, WO3, ZnO, Cu2O and CeO2 metal oxides that are cost-effective and long-lasting were discussed. Strategies to improve CO2 photoconversion efficiency are summarized and photocatalysts forms of 0D, 1D, 2D and 3DOM (zero/one/two-dimensional and three-dimensional-ordered macroporous, respectively) are involved, which can inspire the future improvement in photochemistry.
  • 545
  • 21 Mar 2023
  • Page
  • of
  • 467
ScholarVision Creations