Topic Review
Polyurea in Impact Penetration Resistance and Blast Mitigation
Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. 
  • 548
  • 11 Mar 2024
Topic Review
Materials for treating burns
This article explains this product's requirements and reviews the developmental steps and published literature on the use of Suprathel® (Polymedics Innovations GmbH.  Denkendorf, Germany). Successful research and development cooperation between a textile research institute, the German Federal Ministry of Education and Research via the Center for Biomaterials and Organ Substitutes, the University of Tübingen, and the Burn Center of Marienhospital, Stuttgart, Germany, led to the development of a fully synthetic resorbable temporary epidermal skin substitute for the treatment of burns, burn-like syndromes, donor areas, and chronic wounds. This article describes the demands of the product and the steps that were taken to meet these requirements. The material choice was based on the degradation and full resorption of polylactides to lactic acid and its salts. The structure and morphology of the physical, biological, and degradation properties were selected to increase the angiogenetic abilities, fibroblasts, and extracellular matrix generation. Water vapor permeability and plasticity were adapted for clinical use. The available scientific literature was screened for the use of this product. A clinical application demonstrated pain relief paired with a reduced workload, fast wound healing with a low infection rate, and good cosmetic results. A better understanding of the product’s degradation process explained the reduction in systemic oxidative stress shown in clinical investigations compared to other dressings, positively affecting wound healing time and reducing the total area requiring skin grafts.
  • 547
  • 23 Feb 2021
Topic Review
Vanadium Oxides
Vanadium-based compounds exhibit a range of oxidation states, including V5+, V4+, V3+, and V2+, making them feasible to composite with many other anions and cations to form vanadium oxides, vanadium carbides, vanadium nitrides, vanadium sulphides, vanadium phosphates, and metal vanadates.Among them, vanadium oxides have attracted interest for energy storage in the past decades.
  • 547
  • 24 May 2021
Topic Review
Heteroatom-Doped Metal-Free Carbon Nanomaterials
In comparison to the undoped carbon nanomaterials, heteroatoms such as nitrogen-, sulphur-, boron-, phosphorous-, etc., incorporated nanomaterials have become well-accepted as potential electrocatalysts in water splitting, supercapacitors and dye-sensitized solar cells. 
  • 547
  • 08 Feb 2022
Topic Review
Natural Antibacterial Surfaces
In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments.
  • 547
  • 14 Jul 2022
Topic Review
Tumor Polyamine-Suppressing Strategy
Several tumor polyamine-suppressing strategies have been developed, as follows. (1) Ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase 1 (AMD1) are important for polyamine synthesis. The α-difluoromethylornithine (DFMO), which acts as an irreversible suicide inhibitor of ODC, has been used to prevent and treat multiple cancers, such as pancreatic cancer, gastric cancer, lung carcinoma, neuroblastoma, endometrial cancer, and osteosarcoma. (2) Highly regulated catabolic pathways are utilized to control the intracellular polyamine pool. The modulation of the polyamine catabolic enzyme produces decreasing polyamine content and induces the generation of toxic compounds. (3) Some inhibitors targeting the polyamine transport system (PTS) can hinder polyamine import and antagonize polyamine uptake. (4) Synthetic polyamines, including polyamine analogs and polyamine conjugates, possess anticancer activity against tumor cells.
  • 547
  • 01 Sep 2022
Topic Review
Metal Oxide Based Nano-Photocatalysts as Antiviral Agents
Photocatalysis, a unique process that occurs in the presence of light radiation, can potentially be utilized to control environmental pollution, and improve the health of society. Photocatalytic removal, or disinfection, of chemical and biological species has been known for decades; its extension to indoor environments in public places has always been challenging. Many efforts have been made in this direction since the COVID-19 pandemic started. The development of efficient photocatalytic nanomaterials through modifications to improve their photoactivity under ambient conditions for fighting with such a pandemic situation is a high research priority. Several metal oxides-based nano-photocatalysts have been designed to work efficiently in outdoor and indoor environments for the photocatalytic disinfection of biological species. 
  • 547
  • 30 Sep 2022
Topic Review
Silver and Zinc Oxide Nanoparticles
The versatility of Ag-NPs and zinc oxide NPs (ZnO-NPs) in rendering themselves to many applications, including in sensors, renewable energies, environmental remediation, bio-therapeutic devices, clothing, antimicrobial is currently being explored.
  • 547
  • 17 Apr 2023
Topic Review
PN Drugs Against Intracellular Infections
Polymeric nanocarriers (PNs) are a promising alternative for delivering intracellularly antimicrobials of high toxicity, low solubility and low bioavailability to reduce dose and side effects and improve their therapeutic efficacy. They may prevent unwanted drug interactions and degradation thus decreasing the development of resistance in microorganisms. 
  • 546
  • 25 Aug 2020
Topic Review
Nanoimpact in Plants
Transcriptomics studies are available to evaluate the potential toxicity of nanomaterials in plants, and many highlight their effect on stress-responsive genes. However, a comparative analysis of overall expression changes suggests a low impact on the transcriptome. Environmental challenges like pathogens, saline, or drought stress induce stronger transcriptional responses than nanoparticles. Clearly, plants did not have the chance to evolve specific gene regulation in response to novel nanomaterials; but they use common regulatory circuits with other stress responses. 
  • 546
  • 22 Apr 2021
  • Page
  • of
  • 467
ScholarVision Creations