Topic Review
Workflow of Materials Machine Learning for Perovskite Materials
Perovskite materials have been one of the most important research objects in materials science due to their excellent photoelectric properties as well as correspondingly complex structures. Machine learning (ML) methods have been playing an important role in the design and discovery of perovskite materials, while feature selection as a dimensionality reduction method has occupied a crucial position in the ML workflow.
  • 584
  • 26 Apr 2023
Topic Review
Synthesis of Monoterpene Thiols
Thiols are one of the most convenient synthons in the synthesis of organosulfur compounds. The typical methods to prepare monoterpene thiols include the electrophilic addition of H2S or dithiols to the double bond of monoterpenes; nucleophilic substitution of halides; tosylates/mesylates obtained from corresponding monoterpene alcohols; thia-Michael addition of S-nucleophiles to α,β-unsaturated ketones; nucleophilic epoxide ring opening; nucleophilic substitution of the activated methylene protons; and reduction of sulfochlorides, dithiolanes, thiiranes, and sultones.
  • 584
  • 07 Nov 2023
Topic Review
Electronic Structure and Chemical Bonding of Transition-Metal Monoborides
Boron presents an important role in chemistry, biology, and materials science. Diatomic transition-metal borides (MBs) are the building blocks of many complexes and materials, and they present unique electronic structures with interesting and peculiar properties and a variety of bonding schemes which are analyzed here. Comparisons between MB molecules along the three rows are presented, and their differences and similarities are analyzed. The bonding of the diatomic borides is also described. Three of them RhB(X1Σ+), RuB(X2Δ) and TcB(X3Σ−)  form quadruple σ2σ2π2π2 bonds in their X states. The RhB form quadruple bond also in two low-lying excited states.
  • 584
  • 11 Dec 2023
Topic Review
Diarylureas with Antimicrobial Activity
Diarylureas are tyrosine kinase inhibitors well known in the art as anticancer agents, which might be useful tools for a reposition as antimicrobials.
  • 583
  • 03 Feb 2021
Topic Review
LaAlO3-Based Solid Oxide Fuel Cell Electrolytes
Solid oxide fuel cells (SOFCs) are efficient electrochemical devices that allow for the direct conversion of fuels (their chemical energy) into electricity. Although conventional SOFCs based on yttria-stabilized zirconia (YSZ) electrolytes are widely used from laboratory to commercial scales, the development of alternative ion-conducting electrolytes is of great importance for improving SOFC performance at reduced operation temperatures. The basic information has been researched (synthesis, structure, morphology, functional properties, applications in SOFCs) on representative family of oxygen-conducting electrolytes, such as doped lanthanum aluminates (LaAlO3).
  • 583
  • 16 Jun 2022
Topic Review
Sesquiterpene Essential Oil from Jungia rugosa Less
As part of a project devoted to the phytochemical study of Ecuadorian biodiversity, new essential oils are systematically distilled and analysed. In the present work, Jungia rugosa Less (Asteraceae) has been selected and some wild specimens collected to investigate the volatile fraction. The essential oil, obtained from fresh leaves, was analysed for the first time in the present study. The chemical composition was determined by gas chromatography, coupled to mass spectrometry (GC-MS) for qualitative analysis, and to flame ionization detector (GC-FID) for quantitation. The calculation of relative response factors (RRF), based on combustion enthalpy, was carried out for each quantified component. Fifty-six compounds were identified and quantified in a 5% phenyl-polydimethylsiloxane non-polar column and 53 compounds in a polyethylene glycol polar column, including four undetermined compounds. The main feature of this essential oil was the exclusive sesquiterpenes content, both hydrocarbons (74.7% and 80.4%) and oxygenated (8.3% and 9.6%). Major constituents were: γ-curcumene (47.1% and 49.7%) and β-sesquiphellandrene (17.0% and 17.9%), together with two abundant undetermined oxygenated sesquiterpenes, whose abundance was 6.7–7.2% and 4.7–3.3%, respectively. 
  • 582
  • 21 Oct 2021
Topic Review
Encapsulation of Dyes in Luminescent Metal-Organic Frameworks
White light emitting diodes (WLEDs), as solid-state lighting sources, have attracted increasing attention in the past decades owing to their potential applications in displays and lighting. WLEDs are energy saving and environmentally friendly, and have higher luminous efficiency than conventional incandescent and fluorescent lamps. Moreover, WLEDs emit polychromatic light rather than monochromatic light that was emitted by traditional light emitting diodes (LEDs).
  • 582
  • 29 Oct 2021
Topic Review
Direct Z-Scheme Photocatalysts Based on g-C3N4
Photocatalysis represents a promising technology that might alleviate the current environmental crisis. One of the most representative photocatalysts is graphitic carbon nitride (g-C3N4) due to its stability, cost-effectiveness, facile synthesis procedure, and absorption properties in visible light. Nevertheless, pristine g-C3N4 still exhibits low photoactivity due to the rapid recombination of photo-induced electron-hole (e−-h+) pairs. To solve this drawback, Z-scheme photocatalysts based on g-C3N4 are superior alternatives since these systems present the same band configuration but follow a different charge carrier recombination mechanism.
  • 582
  • 28 Oct 2022
Topic Review
All-d-Metal Heusler Alloys
A promising strategy, resulting in novel compounds with better mechanical properties and substantial magnetocaloric effects, is favoring the d–d hybridization with transition-metal elements to replace p–d hybridization. The term given to these materials is “all-d-metal”. 
  • 582
  • 10 Feb 2023
Topic Review
Ternary III−As Antimonide
During the last few years, there has been renewed interest in the monolithic integration of gold-free, Ternary III–As Antimonide (III–As–Sb) compound semiconductor materials on complementary metal-oxide-semiconductor (CMOS)—compatible silicon substrate to exploit its scalability, and relative abundance in high-performance and cost-effective integrated circuits based on the well-established technology. Ternary III–As–Sb nanowires (NWs) hold enormous promise for the fabrication of high-performance optoelectronic nanodevices with tunable bandgap. However, the direct epitaxial growth of gold-free ternary III–As–Sb NWs on silicon is extremely challenging, due to the surfactant effect of Sb.
  • 581
  • 04 Jan 2021
  • Page
  • of
  • 467
ScholarVision Creations