Topic Review
Fluorescence Enhancement without Structural Modifications
The Green Fluorescent Protein (GFP) and its analogues have been widely used as fluorescent biomarkers in cell biology. Yet, the chromophore responsible for the fluorescence of the GFP is not emissive when isolated in solution, outside the protein environment. Many efforts have been devoted to the study of this famiy of fluorophores, especially on the ways to restaure their emission intensity without modifying their backbone. Here are presented several ways to enhance the emission intensity of these fluorophores, modifying their environment but not their structure.
  • 597
  • 13 Jan 2023
Topic Review
Design and Synthesis of Sidechain Phosphorus-Containing Polyacids
Macromolecules containing acidic fragments in side-groups—polyacids—occupy a special place among synthetic polymers. Properties and applications of polyacids are directly related to the chemical structure of macromolecules: the nature of the acidic groups, polymer backbone, and spacers between the main chain and acidic groups. The chemical nature of the phosphorus results in the diversity of acidic >P(O)OH fragments in sidechain phosphorus-containing polyacids (PCPAs) that can be derivatives of phosphoric or phosphinic acids.
  • 597
  • 13 Feb 2023
Topic Review
Photocatalysis for Water Purification
Endocrine-disrupting chemicals (EDCs) in the aquatic environment have garnered a lot of attention during the past few years. Due to their toxic behavior, which interferes with endocrine functions in both humans and aquatic species, these types of compounds have been recognized as major polluting agents in wastewater effluents. Therefore, the development of efficient and sustainable removal methods for these emerging contaminants is essential. Photocatalytic removal of emerging contaminants using silver carbonate (Ag2CO3)-based photocatalyst is a promising process due to the unique characteristics of this catalyst, such as absorption of a larger fraction of the solar spectrum, wide band gap, non-toxicity, and low cost. The photocatalytic performance of Ag2CO3 has recently been improved through the doping of elements and optimization variation of operational parameters resulting in decreasing the rate of electron–hole pair recombination and an increase in the semiconductor’s excitation state efficiency, which enables the degradation of contaminants under UV or visible light exposure. This entry summarized some of the relevant investigations related to Ag2CO3-based photocatalytic materials for EDC removal from water. The inclusion of Ag2CO3-based photocatalytic materials in the water recovery procedure suggests that the creation of a cutting-edge protocol is essential for successfully eliminating EDCs from the ecosystem.
  • 597
  • 24 Mar 2023
Topic Review
Catalyst for Carbon Nanomaterials
Metal and metal oxide particles could be easily available in smaller amounts in almost all natural materials and could be used for CNTs synthesis. The growth of carbon nanomaterials employing natural materials as catalyst sources could be a significant solution towards lessening our current dependence on non-renewable and expensive catalyst sources for large-scale production.
  • 596
  • 16 Apr 2021
Topic Review
Bioactivity of Steroidal Arylidene Derivatives
Steroids constitute a unique class of chemical compounds, playing an important role in physiopathological processes, and have high pharmacological interest. Due to their straightforward preparation and intrinsic chemical reactivity, steroidal arylidene derivatives are important synthetic intermediates for the preparation of other compounds, particularly bearing heterocyclic systems, in addition to their relevant bioactivity with potential pharmacological interest. 
  • 596
  • 29 Apr 2021
Topic Review
PEDOT-based Catalytic Counter Electrode Material
Dye-sensitized solar cells (DSSCs) emerged in the early 1990s as a promising alternative to the classic silicon-based solar cell due to their unique combination of low cost, ease of fabrication, color palette for building integration, and high efficiency in indoor applications. 
  • 596
  • 08 May 2021
Topic Review
Marine Organisms with Anti-Glioma Activity
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Nearly fifty marine compounds were described as anti-glioma agents in the last decade. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. Marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment. 
  • 596
  • 25 May 2021
Topic Review
Waste Natural Polymers
 Waste natural polymers have received much attention as renewable, biodegradable, non-toxic and low-cost filler in polymer composites. In order to exploit the high potential for residual natural loading in latex composites, different types of surface modification techniques have been applied. This review discusses the preparation and characterization of the modified waste natural fillers for latex-based composites. The potency of the waste natural filler for the latex-based composites was explored with a focus on the mechanical, thermal, biodegradability and filler–latex interaction.
  • 596
  • 12 Nov 2021
Topic Review
HDAC Inhibitors
Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing catalytic domain of the histone deacetylase (HDACs) and they repress the deacetylase enzymatic activity. 
  • 595
  • 10 Jan 2022
Topic Review
Principal Uses of Carbons from Glycerol
Biodiesel is produced by the transesterification of animal fats and vegetable oils, producing a large amount of glycerol as a by-product. The crude glycerol cannot be used in the food or pharmaceutical industries. It is crucial to transform glycerol into value-added products with applications in different areas to biodiesel be economically viable. One of the possible applications is its use as a precursor for the synthesis of carbon materials. The glycerol-based carbon materials have distinct properties due to the presence of sulfonic acid groups on the material surface, making them efficient catalysts. Additionally, the glycerol-based activated carbon materials show promising results concerning the adsorption of gases and liquid pollutants and recently as capacitors.
  • 595
  • 20 Dec 2022
  • Page
  • of
  • 467
ScholarVision Creations