Topic Review
Hop Phenolic Compounds on Dry Hopping Beer Quality
The study considers the phenolic hop compounds’ effect on the quality indicators of finished beer. The topic under consideration is relevant since it touches on the beer matrix colloidal stability when compounds with potential destabilizing activity are introduced into it from the outside.
  • 605
  • 19 Apr 2022
Topic Review
Carbon Capture and Storage (Timeline)
The milestones for carbon capture and storage show the lack of commercial scale development and implementation of CCS over the years since the first carbon tax was imposed. The time line of carbon capture and storage announcements and developments follows:
  • 605
  • 11 Oct 2022
Topic Review
Willardiine and Its Analogues
Willardiine was first identified by Rolf Gimelin in 1959 from the extracts of seeds of Acacia willardiana. Structurally it corresponds to (2S)-2-amino-3-(2,4-dioxopyrimidin-1-yl)propanoic acid (1) and carrying an uracil moiety it can be ascribed to the category of nucleoamino acids. Willardiine is synthesized by the single specific enzyme uracilylalanine synthase, and the N–heterocyclic moiety uracil obtained by the orotate pathway proved to be an effective bioisostere for the distal carboxyl group of L-glutamate. Different  aspects on both chemistry and biotechnological applications of willardine/willardine-analogues and nucleopeptides will be reviewed herein.
  • 605
  • 18 Oct 2022
Topic Review
Tyrocidine
Tyrocidine is a mixture of cyclic decapeptides produced by the bacteria Bacillus brevis found in soil. It can be composed of 4 different amino acid sequences, giving tyrocidine A–D. Tyrocidine is the major constituent of tyrothricin, which also contains gramicidin. Tyrocidine was the first commercially available antibiotic, but has been found to be toxic toward human blood and reproductive cells. The function of tyrocidine within its host B. brevis is thought to be regulation of sporulation. Tyrocidines A, B, and C are cyclic decapeptides. The biosynthesis of tyrocidine involves three enzymes. Parts of its sequence are identical to gramicidin S.
  • 605
  • 15 Nov 2022
Topic Review
Copper-Based Metal–Organic Frameworks for Click Chemistry
In the extensive terrain of catalytic procedures for the synthesis of organic molecules, metal–organic frameworks (MOFs) as heterogenous catalysts have been investigated in a variety of chemical processes, including Friedel–Crafts reactions, condensation reactions, oxidations, and coupling reactions, and utilized owing to their specific properties such as high porosity, tuneability, extraordinary catalytic activity, and recyclability.
  • 605
  • 13 Jan 2023
Topic Review
Atomic-Scale Nano-Ionic Memristor Microwave Switches
Nanomaterials science is becoming the foundation stone of high-frequency applications. The downscaling of electronic devices and components allows shrinking chip’s dimensions at a more-than-Moore rate. Many theoretical limits and manufacturing constraints are yet to be taken into account. A promising path towards nanoelectronics is represented by atomic-scale materials. In this entry, we offer a perspective on a specific class of devices, namely switches designed and fabricated using two-dimensional or nanoscale materials, like graphene, molybdenum disulphide, hexagonal boron nitride and ultra-thin oxides for high-frequency applications.
  • 604
  • 07 Apr 2021
Topic Review
Transition Metal Anchored on Nitrogen-Doped Porous Carbon Catalysts
The design and preparation of novel, high-efficiency, and low-cost heterogeneous catalysts are important topics in academic and industry research. In the past, inorganic materials, metal oxide, and carbon materials were used as supports for the development of heterogeneous catalysts due to their excellent properties, such as high specific surface areas and tunable porous structures. However, the properties of traditional pristine carbon materials cannot keep up with the sustained growth and requirements of industry and scientific research, since the introduction of nitrogen atoms into carbon materials may significantly enhance a variety of their physicochemical characteristics, which gradually become appropriate support for synthesizing supported transition metal catalysts. The doping of nitrogen atoms improves the physicochemical properties of carbon materials with high specific surface area, abundant porous structure, nitrogen-containing groups, and defect sites, which are the ideal support for the preparation of transition metal heterogeneous catalysts.
  • 604
  • 27 Sep 2022
Topic Review
Pharmaceutical and Microplastic Pollution in Water
Pharmaceuticals (PhACs) and microplastics (MPs) are emerging pollutants that pose serious environmental risks. PhACs have been found in low concentrations in a variety of environmental samples, including sewage treatment plant effluents, surface water, seawater, and groundwater, in a number of countries.
  • 604
  • 27 Oct 2022
Topic Review
Bacterial Cellulose-Based Polymer Nanocomposites
Bacterial cellulose (BC) is one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially. Extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities.
  • 604
  • 18 Nov 2022
Topic Review
Treatment Methods for Dye-Contaminated Effluents
Advancements in textile dyeing technologies have introduced novel categories of dyes that have deleterious effects on ecosystems. Primarily, azo dyes represent the majority of synthetic dyes employed in textiles and in the realms of culinary and miscellaneous applications. Traditionally, these dyes infiltrate the environment via discharged contaminated effluents such as wastewater from industrial facilities. The contaminated discharged effluent exerts a pervasive impact on ecosystems, engendering pernicious afflictions in both human and faunal populations. Several treatment methodologies are employed for the eradication of contaminants from natural water resources and wastewater, encompassing all phases within water and wastewater treatment infrastructures. The evolution of each treatment stage is intricately linked to the escalating demand for potable water of impeccable quality. Water treatment methods such as Coagulation and Flocculation, Photocatalytic Degradation, Ion Exchange, Electrochemical Technique, Membrane Filtration, Electrodialysis Process, Biodegradation Techniques, and Adsorption are covered in detail, alongside the impacts of bio-based activated carbon as an adsorbent for azo dye. 
  • 604
  • 26 Sep 2023
  • Page
  • of
  • 467
ScholarVision Creations