Topic Review
Artificial Solid Electrolyte Interface in Anode Materials
Due to the ever-growing importance of rechargeable lithium-ion batteries, the development of electrode materials and their processing techniques remains a hot topic in academia and industry. Even the well-developed and widely utilized active materials present issues, such as surface reactivity, irreversible capacity in the first cycle, and ageing. Thus, there have been many efforts to modify and coat the surface of active materials to enhance the electrochemical performance of the resulting electrodes and cells. This type of coating stands out because of the possibility of acting as an artificial solid electrolyte interphase (A-SEI), serving as an anode protective layer. 
  • 639
  • 02 Dec 2022
Topic Review
Nanoparticle-Guided Brain Drug Delivery in Neurodegenerative Diseases
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as ‘protein misfolding’ diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. 
  • 638
  • 19 Nov 2021
Topic Review
Anti-Graffiti Treatments on Natural Stone Materials
Graffiti vandalism represents an aesthetic and structural phenomenon of degradation both for buildings and cultural heritage: the most used sprays and markers can permeate the stone materials exposing them to degradation. Hence, great attention is being currently devoted to new non-invasive chemical approaches to face this urgent problem. This work is aimed at deeply examining the effects of some of the most sustainable chemical protective methods on the physical properties of natural building materials (e.g., tuff and limestone) by testing two commercial antigraffiti products.
  • 638
  • 21 Jan 2022
Topic Review
Uranium Sulfate
Uranium sulfate (U(SO4)2) is a water-soluble salt of uranium. It is a very toxic compound. Uranium sulfate minerals commonly are widespread around uranium bearing mine sites, where they usually form during the evaporation of acid sulfate-rich mine tailings which have been leached by oxygen-bearing waters. Uranium sulfate is a transitional compound in the production of Uranium hexafluoride. It was also used to fuel aqueous Homogeneous Reactors.
  • 638
  • 28 Oct 2022
Topic Review
Genus Cordyline
Cordyline species have a long history in traditional medicine as a basis of treatment for various ailments such as a bloody cough, dysentery, and a high fever. There are about 26 accepted species names in this genus distributed worldwide, including C. fruticosa, C. autralis, C. stricta, C. cannifolia, and C. dracaenosides. 
  • 638
  • 19 Dec 2023
Topic Review
Thermodynamic Insights into Symmetry Breaking
Symmetry breaking is a phenomenon that is observed in various contexts, from the early universe to complex organisms, and it is considered a key puzzle in understanding the emergence of life. The importance of this phenomenon is underscored by the prevalence of enantiomeric amino acids and proteins. The presence of enantiomeric amino acids and proteins highlights its critical role. However, the origin of symmetry breaking has yet to be comprehensively explained, particularly from an energetic standpoint.  Therefore, a novel approach is explored by considering energy dissipation, specifically the lost free energy, as a crucial factor in elucidating symmetry breaking. A comprehensive thermodynamic analysis applicable to all scales from elementary particles to aggregate structures such as crystals is performed, we present experimental evidence establishing a direct link between nonequilibrium free energy and energy dissipation during the formation of the structures. Results emphasize the pivotal role of energy dissipation, not only as an outcome but as the trigger for symmetry breaking. This insight suggests that understanding the origins of complex systems, from cells to living beings and the universe itself, requires a lens focused on nonequilibrium processes  
  • 638
  • 15 Apr 2024
Topic Review
Nitric Oxide for Dermal Application
Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiological processes, including skin health. The lack of NO• is known to cause or worsen skin conditions, so an exogenous delivery through NO-donors can compensate its deficiency. This has been incorporated into natural, synthetic and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing and circulatory dermal applications.
  • 637
  • 25 Apr 2021
Topic Review
Nanoformulations Therapy for Ovarian Cancer
Treatment of ovarian cancer is challenging due to late stage diagnosis, acquired drug resistance mechanisms, and systemic toxicity of chemotherapeutic agents. Combination chemotherapy has the potential to enhance treatment efficacy by activation of multiple downstream pathways to overcome drug resistance and reducing required dosages. Sequence of delivery and the dosing schedule can further enhance treatment efficacy. Formulation of drug combinations into nanoparticles can further enhance treatment efficacy. Due to their versatility, polymer-based nanoparticles are an especially promising tool for clinical translation of combination therapies with tunable dosing schedules. 
  • 637
  • 25 May 2021
Topic Review
Bio-Photonic Cavities
An eco-friendly approach to usual optical cavities, in which an electromagnetic radiation can release energy to matter by interacting with its molecular or atomic structure. Based on bio-inspired and biodegradable meta-surfaces, able to behave as a resonator for light, their optical response can be engineered at will to accomplish a particular optical task.  
  • 637
  • 24 Nov 2021
Topic Review
Nanostructures for Breast Cancer Diagnosis
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. 
  • 637
  • 20 Jul 2022
  • Page
  • of
  • 467
ScholarVision Creations